• 締切済み

図形と計量について

前回投稿させていただいたのですが、タイトルを間違えてました。 △ABCにおいて、AB=4,AC=3,∠BAC=60°とする。また、三角形ABCの外接円をKとする。このとき、 BC=√13であり、△ABCの面積をS,外接円Kの半径をRとすると、 S=3√3, R=√39/3である。 (1)点Bにおける円Kの接線と点Cにおける円Kの接線を交点をDとし、直線ADと辺BCの交点をEとする。また、接線BD上に点Bに対して点Dと反対側に点Fをとる。 (図参照) (i)円Kの中心をOとすると、∠BOC=120°だから∠BDC=60°となり、BD=CD=√13である。 (ii)∠ABF=∠BCAだから, sin∠ABD=6/√39となる。 したがって△ABDの面積とT1とすると、 T1=4√3 となる。 同様にして,△ACDの面積をT2とすると, T2=9√3/4となる。 以上より, BE:EC=16:9を得る。

みんなの回答

  • simotani
  • ベストアンサー率37% (1893/5080)
回答No.2

まさか、T1とT2を求める質問とか。

  • edomin7777
  • ベストアンサー率40% (711/1750)
回答No.1

で? 何が聞きたいの?

関連するQ&A