ベストアンサー 積分 2010/12/12 02:58 ∫sinx/(sinx+cosx+1)dx をtanx/2=tと置換して計算する利点はなんですか? みんなの回答 (3) 専門家の回答 質問者が選んだベストアンサー ベストアンサー info22_ ベストアンサー率67% (2650/3922) 2010/12/14 12:10 回答No.3 #2です。 A#2の補足の質問の解答 >∫t/(1+t^2)dtの答えは(1/2)log(1+t^2)+C で合っていますか? 不定積分なので積分定数Cを加えれば、合っていますよ。 積分が正しいかどうかの確認は、積分結果の関数を微分して被積分関数になることで確認できます。覚えておいて下さい。 {(1/2)log(1+t^2)}'=(1/2){1/(1+t^2)}(1+t^2)'=(1/2)(2t)/(1+t^2)=t/(1+t^2) 被積分関数になりました。ということは積分が合っているということです。 質問者 お礼 2010/12/14 23:47 ありがとうございました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (2) info22_ ベストアンサー率67% (2650/3922) 2010/12/12 14:45 回答No.2 >tanx/2=tと置換して計算する利点はなんですか? この置換によって非積分関数が有理関数(分子と分母が整式の分数関数)の積分に変換でき、それを部分分数展開すれば簡単な積分公式が適用できて積分が完了する」といったほとんど機械的に積分をすることができる。つまり簡単な数学的基礎と基本的な積分公式を覚えていれば(あるいは積分公式表をみれば)誰でも積分できてしまうといった利点がある。必ず積分できるといった万能な方法です。 他の置換法は、ある場合はうまく積分できる場合もあるが、うまく積分できない場合もあって万能な置換法ではない。 ちなみにtanx/2=tという置換を用いれば dx=2dt/(1+t^2) sinx=2t/(1+t^2) cosx=(1-t^2)/(1+t^2) となることから >∫sinx/(sinx+cosx+1)dx =∫2t/{(t+1)(1+t^2)}dt =∫t/(1+t^2)dt+∫1/(1+t^2)dt-∫1/(t+1)dt という積分の和に分解できます。 後は積分公式を適用するだけですね。 質問者 補足 2010/12/14 01:50 ∫t/(1+t^2)dtの答えは1/2log(1+t^2)で合っていますか? 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 tomaruna2011 ベストアンサー率11% (8/69) 2010/12/12 03:30 回答No.1 自分なりの意見をここで言えるだけの学問をしておいても良かったなと思った。 何も言えないのが悔しい。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 不定積分です ∫1/(1+tanx)dx をtanx=tとおいて解くらしいのですが、うまくいきません。 答えは1/5*log|{2(1-cosx)+sinx}/(1-cosx-2sinx)|+C です(わかりにくくてすいません)。たびたび申し訳ありませんがお願いします。 積分について ∫tanxdx この積分なのですが、∫(sinx/cosx)dxのcosxを置換して求める方法は出来ますが、logx=tと置いて計算する方法もあるみたいです。どこからlogxが出てくるのか全然分からないので、どのような計算になるのか教えてください! 数III 積分教えてください (1)∫tanx^2/cosx^2 dxが、(1/3)tanx^3になる計算過程を教えてください。 (2)∫sinx/cosx^2 dxが、1/cosxになる計算過程を教えてください。 (3)∫(3x)^2*e^(-3x)dxが、-(1/3)*(9x^2 + 6x + 2)e^(-3x)+Cになる計算過程を教えてください。 計算途中に出てきたのですが、答えが合いません。 解き方を教えてください。 詳しいとありがたいです。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 三角関数の積分 どこが間違っているのでしょうか.部分積分を利用して解こうとしました。 ∫tanx dx =∫sinx/cosx dx = (-cosx)/cosx -∫(-cosx)・{(cosx)-1}’dx = -1-∫(-cosx)(-1)・(cosx)-2・(-sinx)dx = -1+∫sinx/cosx dx となり 0=-1で矛盾します。 tanx = -(cosx)’/cosxとみて 答えは -log|cosx|となることはわかるのですが。上記の部分積分の間違っている点を教えてください。 積分教えてください ∫(π /6~π/3 ) {(sinx+cosx)/(sinx cosx)}dx の問題を部分積分で解くと計算が長くなりました。 この問題は置換積分などで解けますか?どのように解くべきなのかが分かりません。 解き方を教えてください。 解説が詳しいとありがたいです。 不定積分の問題 高校数学の不定積分の問題です。 1) ∫(tanx)^4dx 2) ∫{x/(1-cosx)}dx 1)に関しては (tanx)^4=(tanx)^2*(sinx/cosx)^2 =(tanx)^2*{1-(cosx)^2}/(cosx)^2 =(tanx/cosx)^2-(tanx)^2 =・・・ というような操作をするのかと思ったのですが・・・。2)は全く不明です。お願いします。 cos の積分について ∫1/(1-aCOSx)^3 dx-∫(1-a^2)(SINx)^2/(1-aCOSx)^5 dx a:定数 第1項、2項目ともに積分法が良くわかりません。 一応考えてみたのが TANx/2 = t とおき COSx = (1-t^2)/(1+t^2) SINx = 2t/(1+t^2) dx = 2/(1+t^2) として考えてみましたが、やはりできません。 解き方がわかるかたいましたら、ヒントだけでも お願いします。 積分について・・・ 例えば、 ∫√(2x-1) dx = 1/2 * 2/3 * (2x-1)√(2x-1) + C = 1/3 * (2x-1)√(2x-1) + C というように、二分の一乗の、二分の一で割っているのに、 次の問題でも同じように割ってしまうと・・・ ∫(cosx)^(-2) dx = 1/(-sinx) * 1/(-1) * 1/(cosx) + C = 1/{(sinx) * (cosx)} +C となり、答えが違ってきます。この問題の正解はtanx + C なんですが・・・。 tanx + C にするためには、-sinxで割るのではなく、-sinxでかけないといけません。上と下の問題を同じようにやるとおかしくなります。上では割って、下ではかけて・・・。 このようなやり方の差はなぜ起こるんでしょうか?この二つの問題の間で何が起こってるんですか? 積分 ∫(1+sinx)^(-1)dx 参考書によると、tanx-(cosx)^(-1)+C 詳しい解説お願いします。 積分、うまい解き方はないか。。。 ∫1/(1-cosx)dx,∫sin2x/(sinx-1)はtanx/2=tと置く事によりうまく解けるのですが、これ以外の解き方はないでしょうか。この解き方だと時間が多少かかります。 極限の定石1-cosxをみたら1+cosxをかける、またこれを応用して1-ssinxを見たら1+sinxをかけるということを試みたら上のような問題が解けたことがあります。でも上のものはこの方法ではできませんでした。 上の2つの積分との解き方と、一般に入試問題で極限の考え方で通用することは多いのか少ないのかということを教えてください。 よろしくお願いします。 三角関数の積分(大学) 次の関数の不定積を求めてください。 (1)(2ーsinx)/(2+cosx) (2)1/(2+tanx) (3)(1-acosx)/(1-2acosx+a^2) (4)(tanx)^6 (2)でtan(x/2)=tで置換したのですが複雑でとけませんでした。 ご教授宜しくお願いします。 積分 ∫dx/(sinx+cosx) この問題なんですが tan(x/2)=tとおいて cosx=(1-t^2)/(1+t^2) sinx=2t/(1+t^2) dx=2dt/(1+t^2) ・・・・ とやるそうなんですが、cosxとsinxはどうやって あんな形にするんでしょうか? 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム この積分の問題教えてください この問題の答えが無いので教えてください。 自分なりに解いたのですが、合ってるでしょうか? ∫[0,π/2] 1 / sinx+cosx dx tan(x/2)=t とおくと、 dx=2/(1+t^2) dt cosx=(1-t^2)/(1+t^2) sinx=2t/(1+t^2) となる。 置換した後の積分範囲は、 x|0→π/2 t|0→ 1 ∫[0,π/2] 1 / sinx+cosx dx = -2∫[0,1] 1 / t^2-2t-1 dx 分母を平方完成して = -2∫[0,1] 1 / (t-1)^2-2 dx 公式:∫[1 / x^2-a^2] = 1/2a log|x-a/x+a|なので =1/√2 log|(-√2-1) / (√2-1)| logの中が汚いかんじで合ってるか不安です。 教えてください。 積分 ∫dx/(sinx+cosx) この問題なんですが tan(x/2)=tとおいて cosx=(1-t^2)/(1+t^2) sinx=2t/(1+t^2) dx=2dt/(1+t^2) ・・・・ ・・・・ のdxはどうやったらでるんでしょうか? 積分 問題 1/sinx について 積分 問題 1/sinx について ∫(1/sinx)dxについて。 ∫(1/sinx)dx=∫(sinx/1-cos^2x)dxとする。 cosx=tの置換と部分分数分解を用いて、 1/2(log|(1-t)/(1+t)|)+C まで求めました。 結果、1/2(log|(1-cosx/(1+cosx))|)+Cとなると思います。 テキストの回答が、1/2(log(1-cosx/(1+cosx)))+C と絶対値無しで記載されているのですが、絶対値は必要無いのでしょうか? なぜ絶対値が外せるのでしょうか? (logx)’はlog(-x)’と同じなのでlog|x|’としていると考えているのですが、 絶対値はあっても無くても良いのでしょうか? ご回答よろしくお願い致します。 積分がわかりません いくつかわからないので教えていただきたいです。∫は省略します。 まずlog(1+√x)dxですが、t=√xと置換してdx=2tdtとなり 2tlog(1+t)dtとなります。しかしここからのやり方がわかりません。 次にcos^3xsin^2xdxですが、部分積分を使ってやってみたのですがどうもうまくいきません・・・しかし部分積分を使うのは間違いなさそうなんです。 次に(1/(x^3-x))dxですが、この式は1/x(1-x)(1+x)に変形できます。 分母が2つの掛け算ならば部分分数にできるのですが3つの掛け算なのでどうしたらいいのかわかりません。 次に(x/(x^3+1))dxですが、この式をx/(x+1)(x^2-x+1)と変形したあとのやり方がわかりません。 最後に、これが一番聞きたいことなんですが (1/cosx)dxの積分です。 分子分母にcosxを掛けてcosx/cos^2xとします。 sinx=tとおくと、dx=dt/cosxとなり、最初の式はdt/(1-t^2)になります。 部分分数にして1/2∫(1/(1+t)+1/(1-t))dtになります。 よって1/2(log|1+t|-log|1-t|)=1/2log|(1+sinx)/(1-sinx)|になりますよね?? でも、解答にはlog|(1+sinx)/cosx|って書いてあるんです。 どこが間違ってるのかわかりません。 以上長いですが教えていただけたら幸いです。 数III 定積分の問題 以下の定積分の問題が上手く問けません。 ∫{0→π/2}√(1+sinx)dx というものなのですが、 1+sinx=tとおいて置換積分をすると dx=dt/cosx となって、tとxが一緒に出てきてしまいってどうしたら良いか分からず、sinx=tとおいても同じような結果になってしまいました。 π/2-x=tとおいてもsinがcosに入れ替わっただけになってしまい、煮詰まってしまいました。 ヒントや考え方の指針でも良いので教えて頂けると嬉しいです。 cosx/sinxの積分を教えてください cosx/sinx (=1/tanx) の積分がわからないです。 答えは(sinx)^2になるらしいのですが、どう計算したらいいのかわかりませんでした。 高校 積分について 2∫sinx (sinx)' dx = [sin^2x] ∫(e^x + 1)^2 (e^x + 1) dx = [ 1/3 (e^x + 1 ) ^3 ] ∫tanx ( tanx )' dx = [ 1/2 ( tanx )^2 ] 積分と微分が逆の計算ということより、 ∫と( )' が打ち消しあうと思っていたのですが、 1/3、1/2 はどこからでてきたものなんですか? 積分区間 積分区間(0→π)sinx/(2-(cosx^2))を積分する問題です。よろしくお願いいたします。 解答はこれをcosx=tと置換しているのですが、私は、解答を見る前は自分では、sinx=tと置換しました。が、置換するときに置換範囲で困ってしまいました。というのもxが(0→π)のとき、tの積分範囲は0→0になってしまったからです。でも、この場合xが(0→π)のときsinxは0≦sinx≦1と動くので、積分範囲は置換後0→1となるのでしょうか?でもなんだかおかしいような気がします。でもなにがおかしいのかわかりません。 そもそもsinx=tと置換すること自体が間違いなのでしょうか?それとも、sinx=tと置換するのも間違いではないが、その場合は、・・・その場合は範囲はどうなりますか? よろしくお願いいたします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございました。