• ベストアンサー

集合

集合A=(x-4|x^2-6x+8≧0) はどうやれば具体的な範囲がわかるのでしょうか? x-4というところがよくわかりません。 よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

stripeさん、こんばんは。 >集合A=(x-4|x^2-6x+8≧0) これは、どういう意味かというと、 集合Aは、(x-4)というものの集まりですよ、 そして、そのxとは、x^2-6x+8≧0 となるようなxのことですよ、 という意味です。 x^2-6x+8=(x-3)^2-9+8 =(x-3)^2-1 なので、これをyとすると、 y=(x-3)^2-1 これは、頂点(3,-1)下に凸の放物線です。 ですから、 x^2-6x+8≧0となる範囲は、 x^2-6x+8=0を解いて、 x=3±√(3^2-8)=3±1=4,2←因数分解してもよかったです。 なので、x≦2,4≦xの範囲ですね。 さて、xは上のような範囲です。 集合Aの要素は、これらよりも4ずつ小さいものの集合なので、 x≦2-4,4-4≦x すなわち x≦-2,0≦x でいいと思います。 (別解) 集合A={(x-4|x^2-6x+8≧0) } であるが、そのx-4のxは、二次不等式を満たすので、 集合A={X|X=x-4} という{X}を求めればよいことになります。 これは、平行移動と同じ原理で、 X=x-4 X+4=x この、小文字のxは、x^2-6x+8≧0を満たすので、 ここに代入すればよい。 (X+4)^2-6(X+4)+8≧0 X^2+8X+16-6X-24+8≧0 X^2+2X≧0 X(X+2)≧0 X≦-2,0≦X

stripe
質問者

お礼

どうもありがとうございマス!! いつもxなのが、変っていたので戸惑ってしまいました。 そうやって考えればよいんですね! 参考にさせていただきます。 ご解答有り難うございました。

その他の回答 (2)

  • Rossana
  • ベストアンサー率33% (131/394)
回答No.3

>=(y+4)^2-6(y+4)+8 =y^2+8y+64-6y-24+8 =y^2+2y+48≧0 計算ミスです.すいませんm(__)m >=(y+4)^2-6(y+4)+8 =y^2+8y+16-6y-24+8 =y^2+2y≧0 が正しいです.

stripe
質問者

お礼

どうもありがとうございます! ふだんとちょっとちがって戸惑ってしまいました。 訂正了解しました! 参考にさせていただきます。 ありがとうございました~。

  • Rossana
  • ベストアンサー率33% (131/394)
回答No.2

y=x-4とすると, x^2-6x+8 =(y+4)^2-6(y+4)+8 =y^2+8y+64-6y-24+8 =y^2+2y+48≧0 で考えれば,あとは簡単ですね.

関連するQ&A