• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:周波数60[Hz]、実効値100[V]、時間t=0の時の位相角π/4[)

正弦波交流電圧の瞬時値を求める問題について

このQ&Aのポイント
  • 周波数60[Hz]、実効値100[V]、時間t=0の時の位相角π/4[rad]の正弦波交流電圧について瞬時値[V]を求める問題です。
  • 解法としては、V=√2V sin(wt-π/4)の式を用います。具体的な計算手順については説明しています。
  • 参考書では、sin(2π×312)はsin(2π)と等しいとして解答が出されていますが、その理由について疑問を持っています。対応する定理や公式があるのかを知りたいです。

質問者が選んだベストアンサー

  • ベストアンサー
  • fujiyama32
  • ベストアンサー率43% (2306/5313)
回答No.2

角度をラジアンにより計算する必要があります。 1回転は2π[rad]です。判りやすく逆に言えば2π[rad]は1回転した ことを表します。 2π×312は 312回転したことになります。 即ち、元に位置に戻ったことになります。 元に位置に戻った状態として(=0[rad])と同じです。 即ち、2π×312=0となります。 sin(2π×312-π/4)=sin(0-π/4) sin(0-π/4)=sin(-π/4) sin(-π/4)=-sin(π/4)=-√2/2 となります。 或いは、2π×312回転した状態は 1回転した状態(=2π)と同じです。 即ち、2π×312=2πとなります。 sin(2π×312-π/4)=sin(2π-π/4) sin(8π/4-π/4)=sin(7π/4) sin(7π/4)=-√2/2 となります。 なお、V=√2V sin(wt-π/4)の波形は V=√2V sin(wt)の波形より(-π/4) [rad:ラジアン] 遅れた波形と 考えれば良いでしょう。 その結果、いずれも -√2/2 となり、 答えは [-100V] になると考えられます。 念のため、最初に提示された式にラジアン計算ができる関数電卓を 用意して検算して下さい。

bibloda
質問者

お礼

詳しい説明でよく理解できました。ありがとうございました。

その他の回答 (1)

  • spring135
  • ベストアンサー率44% (1487/3332)
回答No.1

sin関数は周期2πの周期関数です。よって2πの整数倍前後しても値は不変、つまり sin(2πn+α)=sin(α) (nは整数) なお V=√2V sin(wt-π/4)は間違いです。 V=√2V sin(wt+π/4)が正しい。 7段目で急に-から+に勝手に変えて答えを合わせています。

bibloda
質問者

お礼

回答ありがとうございました。 ちょっと教科書の解答部分を写し書きするときに書き間違いをしてたみたいです。 ご指摘ありがとうございました。

関連するQ&A