- 締切済み
証明問題の答えあわせをお願いします。
証明問題の答えあわせをお願いします。 問.a+b+c+abc=4、a≧0 b≧0 c≧0の時a+b+c≧ab+bc+caを示せ。 自分の答え. f(a,b,c) = a+b+c-ab-bc-ca = a(1-b-c)+b+c-bcとおく。 条件より a≧0,b≧0,c≧0 …(1) a+b+c+abc=4 …(2) また、本問では対称性より a≧b≧c…(3)の場合を考えるだけで十分である。 まず、a,b,cの取りうる範囲について考える。 a+b+c+abc ≧2√(ab)+c+abc (∵相加相乗平均) =2√(ab)+c(1+ab) ≧2√(ab)+c・2√(ab) (∵相加相乗平均) =2√(ab)・(c+1) ≧2√(ab)・2√c (∵相加相乗平均) =4√(abc) 従って、(2)より1≧abc…(4)が成り立つ。 また、(2)を変形するとa=(4-b-c)/(1+bc)となり、 a=(4-b-c)/(1+bc)≦4/(1+bc)≦4 ∴a≦4…(5) 次に、aについて場合分けしてf(a,b,c)≧0を示す。 (1)1>a≧0の場合 (3)より1>a≧b≧c、1>abcとなるので、4>a+b+c+abcとなり、これは(2)に反する。 (2)a≧1の場合 (5)より1≦a≦4となり、また(4)よりbc≦1…(6) ここで、f(a,b,c)はaについての1次関数と見なせるので、 区間1≦a≦4の両端におけるf(a,b,c)の値を求めると、 a=1のときf(1,b,c) = 1-bc ≧0 (∵(6)) a=4のとき、(2)よりb,cのとりうる値はb=c=0のみなので、f(4,0,0) = 0 ここで、f(a,b,c)はaについての1次関数なので、区間1≦a≦4において直線的に変化する。 以上より、常にf(a,b,c)≧0となるので、題意は示された。■ 全体的にもやもやしてますが、特に最後の数行がどうも自信がありません。横軸にa、縦軸にfを取ったとき、b,cが変化しても、(1,1-bc)と(4,0)を結ぶ直線上で変化するのだからf≧0としたのですが、大丈夫でしょうか。 また、元の式がきれいなので、因数分解して○≧0のような式にしたり、他のエレガントな方法を思いついた方は教えてください。長くなりましたが、よろしくお願いいたします。
- みんなの回答 (6)
- 専門家の回答
みんなの回答
- aabel
- ベストアンサー率100% (1/1)
- aabel
- ベストアンサー率100% (1/1)
- mister_moonlight
- ベストアンサー率41% (502/1210)
- mister_moonlight
- ベストアンサー率41% (502/1210)
- mister_moonlight
- ベストアンサー率41% (502/1210)
- 112233445
- ベストアンサー率40% (6/15)
お礼
>b、cをはじめ固定するとaは一通りになってしまう。 >そこで、aの1次関数としては扱えないのではないですか。 何で先にb,cを固定する必要があるのでしょうか。 申し訳ありませんが、moonlight様やaabel様のお答えは難解で、私の理解の及ぶところではないので、今後回答してくださらないよう、お願いいたします。