- 締切済み
1階線形偏微分方程式の一般解
数学のことでちょっと皆様のお知恵を拝借いたしたく質問します。 次の偏微分方程式の一般解の求め方を教えてください。 ∂T(x,t)/∂t + (q(t)/S)(∂T(x,t)/∂x) = c(T_w(x,t) - T(x,t)) c,S:定数 僕の所有する参考書によるとこの種の方程式は ラグランジュの偏微分方程式と呼ばれていて、 ちょっとだけ一般解の求め方が書いてありました。 しかし、どうしても一般解にたどりつけません。 その方法とは、偏微分方程式 P(x,y,z)(∂z/∂x) + Q(x,y,z)(∂z/∂y) = R(x,y,z) に対して連立補助方程式 dx/P = dy/Q = dz/R を解いた解を f(x,y,z) = a, g(x,y,z) = b (a,bは積分定数) とする。φを任意の関数として、一般解は φ(f,g) = 0 である。 という解法です。しかし、T_wが邪魔でうまくいかないです。 詳しい参考書を手に入れようにも近くに本屋がないのでお手上げです。 どなたかご教授お願いしますm( _ _ )m
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- keyguy
- ベストアンサー率28% (135/469)
回答No.1
dt=dxS/q(t)=dT/(c(Tw-T)) を解いて f(t,x,T)=C,g(t,x,T)=D の関係を求めて φ(f,g)=0 を出せばいいのでは?