- 締切済み
2次曲線の2接線のなす角
以下の問題についての質問です。 平面上の点P(a,b)〈a^2>b〉から放物線y=x^2に2つの接線をひいたとき、2接線の間の角がπ/2となるような点Pの描く軌跡を求めよ。 この問題の場合y=m(x-a)+bと直線をおき、判別式をとり、解と係数の関係を利用するのが普通だと思いますが、2接点をおいて、公式から接線をだして、これが点Pを通り、垂直の条件から、自分でおいた2接点を消去するという解法がうまくできません。この解法は不可能なのでしょうか。
- みんなの回答 (2)
- 専門家の回答
みんなの回答
- info22
- ベストアンサー率55% (2225/4034)
回答No.2
- mister_moonlight
- ベストアンサー率41% (502/1210)
回答No.1