- ベストアンサー
微分[最大値と最小値]
某テキストを使用していてわからない問題があるので教えてください。 数学素人なので教える感じで説明してくれる方お願いします。 問 関数f(x)= -x^3+3ax(0=<x=<1)の最大値とそのときのxの値を求めよ。ただし、aは定数とする。 こたえ a=<0のとき、 x=0で最大値0 0<a<1のとき、 x=√aで最大値2a√a 1=<aのとき、x=1で最大値3a-1 微分して最大値を求める問題は理解しています。 解説では、 f'(x)=-3x^2+3a=-3(x^2-a) a=>0ならば、f'(x)<=0でf(x)は単調に減少する。 よって最大値はF(0)=0 a>0ならば、f'(x)=-3(x+√a)(x-√a) [1]0<√a<1のとき、すなわち、0<a<1のとき、 f(x)はx=√aで極大かつ最大である [2]1=<√aのとき、すなわち 1=<aのときf(x)は単調に増加し、x=1で最大である。 とあります。が、この解説を読んでもわかりません。 どういった知識(公式、定理)が必要でしょうか?漏れがあるかもしれません。 わかりやすく教えてくれる方、回答お待ちしています。
- みんなの回答 (3)
- 専門家の回答
お礼
fushigichanさん、こんにちは。大変返信遅くなり申し訳ありません。増減表を利用すれば解明しやすいことが判明しました。ありがとうございました。またお会いしましょうヘ(^o^)/