ベストアンサー ※ ChatGPTを利用し、要約された質問です(原文:積分径路) 積分径路についての疑問 2009/08/15 02:16 このQ&Aのポイント 経路IIIの積分は経路Iの積分を-1倍した結果となるのか疑問があります。経路IIIの積分でz=(e^(2πi))xと置かれていますが、結局z=xとなるため、経路Iの積分と積分の方向が違うだけなのか疑問です。ヒントとしていくつかの要素があるかもしれませんが、解答の理由について疑問があります。 積分径路 http://www.i.u-tokyo.ac.jp/edu/entra/pdf/archive/02math-j.pdf の第6問(4)についてなのですが、 http://tzik.homeunix.net/ap2007/wiki/index.php?%E9%99%A2%E8%A9%A6%E9%81%8E%E5%8E%BB%E5%95%8F%202002%E5%B9%B4%E5%BA%A6%20%E6%95%B0%E5%AD%A6 の経路IIIの積分で、z=(e^(2πi))xと置かれていますが、経路IIIもe^(2πi)=1なので結局z=xとなり、経路Iの積分と積分の方向が違うだけなので、結局、経路IIIの積分は経路Iの積分を-1倍した結果となると思うのですが、何故このような解答になるのでしょうか? ヒントになりそうなことでも良いので、宜しくお願いします。 質問の原文を閉じる 質問の原文を表示する みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー rnakamra ベストアンサー率59% (761/1282) 2009/08/15 08:58 回答No.1 I→II→III→IVの順番で積分していますので、その経路をz=r*e^(iθ)で表したときにrおよびθの変わり方を見ていきましょう。 経路I:z:ρ→Rであるが、θに±2nπの任意性があるのでθ=0とする。 r:ρ→R,θ=0がこの経路のr,θの範囲である。 経路II:半径R,最初にθ=0で反時計回りに1周しているのでθ:0→2π (θ:0→0ではない!!) 経路III:r:R→ρ,θは経路IIを終えた直後であるのでθ=2π 経路IV:r=ρ,最初にθ=2πで時計回りに1周しているのでθ:2π→0 上から見てわかるように Iの経路ではr:ρ→R,θ=0 IIIの経路ではr:R→ρ,θ=2π となっています。この値を実際の積分に入れて見ます。 この際、計算の中でz^a(z:非整数)が現れるためe^(2nπi)を1とおいて計算してはならない。(後述) 経路I:z=r*e^(iθ)=r*e^(0) dz=e^(0)dr ∫_I z^a/(1+z)dz=∫[r:ρ→R] r^a*e^(a*0)/(1+r*e^(i0)) e^(0)dr =∫[r:ρ→R] r^a*1/(1+r*1) 1*dr =∫[r:ρ→R] r^a/(1+r) dr 経路III:z=r*e^(iθ)=r*e^(2πi),dz=e^(2πi)dr ∫_III z^a/(1+z)dz=∫[r:R→ρ] r^a*e^(a*2πi)/(1+r*e^(2πi)) e^(2πi)dr =∫[r:R→ρ] r^a*e^(2πai)/(1+r*1) 1*dr =∫[r:R→ρ] r^a*e^(2πai)/(1+r) dr e^(2πai)は0<a<1ですので1ではない値をとります。 z^aの形はaが整数の場合にはz=1であればz^a=1としても問題ありませんが、aが整数でない場合z^a=1は無条件には成り立ちません。2naπの任意性が現れます。(a:整数の場合は2naπの任意性があってもnaが整数となるため=1としてかまわない。)ですのでzの位相を調べた上で計算しないといけないのです。 質問者 お礼 2009/08/15 12:02 あー、確かに経路を順に辿っていくことを考えると、経路IIIの時、θは2πとなり、z^aで影響してきますね^^; どうも有り難うございました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 複素積分、積分路に関する問題が解けなくて困っています。 複素積分、積分路に関する問題が解けなくて困っています。 来年大学院受験です。 問題は http://www.i.u-tokyo.ac.jp/edu/entra/pdf/archive/10math-j.pdf の第2問です。 (1)不定積分はすぐに解けるのですが、 (2)の積分経路はどうしていいかわかりません。 自分の途中までの回答としては、 (1)はtan^(-1)x + C, (1/2)*log(x^2+1) + C (2)はS1,S2,S3,S4の経路をそれぞれ z(t)=1+it (-1≦t≦1) z(t)=-t+i (-1≦t≦1) z(t)=-1-it (-1≦t≦1) z(t)=t-i (-1≦t≦1) とし、それぞれtで微分すると、 dz=idt dz=-dt dz=-idt dz=dt となり、それぞれ、 I_1 = ∫(-1~1) 1/(1+it-(a+ib)) * idt I_2 = ∫(-1~1) 1/(-t+i-(a+ib)) * -dt I_3 = ∫(-1~1) 1/(1+it-1-it-(a+ib)) * -idt I_4 = ∫(-1~1) 1/(t-i-(a+ib)) * dt という風に表せると思いますが、 ここでI_1は定積分すると log|(i+1-a-ib)/(-i+1-a-ib)|となりましたが、このままでいいのでしょうか? 何かもう少し変化させたりとかできないのでしょうか? 少々行き詰ってしまったので、指標をいただければ嬉しいです。 よろしくお願いいたします。 積分の問題 http://www.i.u-tokyo.ac.jp/edu/entra/pdf/archive/09math-j.pdf の第2問の(5)についてなのですが、 最初にθ0を切ってからθ1を越えるまでのxの関数をx_up(t) θ1を越えてからθ0を切るまでのxの関数をx_down(t) とし、θバーを~θと表すと、 f(x,~θ)=x_down^(-1)(x)-x_up^(-1)(x)-(τ*~θ)/(θ1-θ0) というところまでは、求まっているのですが、これを単純にθ0~θ1の範囲で積分して、θ0とθ1をωと~θで置き換えて、ωで微分して常に負になることから、単調減少を示そうとしてみたのですが、どうもうまくいきそうにありません。 何か良い方法があるなら教えて欲しいです。 宜しくお願いします。 工学応用とフーリエ変換 http://www.i.u-tokyo.ac.jp/edu/entra/pdf/archive/02math-j.pdf の第4問(4)についてなのですが、 http://tzik.homeunix.net/ap2007/wiki/index.php?%E9%99%A2%E8%A9%A6%E9%81%8E%E5%8E%BB%E5%95%8F%202002%E5%B9%B4%E5%BA%A6%20%E6%95%B0%E5%AD%A6 の第四問(4)の解答と同じ所までは求めたのですが、どのように工学応用での典型的な場合を想定して境界条件を定めて求めればいいのかが分かりません。 宜しくお願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム ー∞から∞までの複素積分について 実軸上の-R≦x≦Rを直径とする半円の経路を積分して求めるやり方がありますよね。たとえば 1/(x^2+a^2) ただし(a>0) をー∞から∞までxで積分するという問題で、これを上半円周上の経路積分、1/(z^2+a^2)に置き換えると、 半円部分の積分はZ=R*e^iθとおいてやると、被積分関数はRie^iθ/(R^2*e^2iθ+a^2)となりますが、これがR→∞のときに0に収束するということがいいたいのですが言えません。どうしたらいえるでしょうか? 何か意味不明な文章かもしれませんがよろしくお願いします。 分布関数の表記 http://www.i.u-tokyo.ac.jp/edu/entra/pdf/archive/02math-j.pdf の第3問(3)について質問なのですが、P{Z_i=1}=μ/nという表現の{}の部分は、いったいどの様な意味を表しているのでしょうか? また、P{M=k}は、Mの分布関数P{M=k}という表現で使用されている部分があるので、変数Mを持つ分布関数PのMの値がkのとき、という解釈でいいのでしょうか? 複素積分についての質問です。 複素積分についての質問です。 ∫1/(1+x^3)dx 積分範囲はx:0~∞ という問題です。 f(z)=1/(1+z^3)とおいて留数を考えて計算していこうと思いました。 極が z=1、exp(iπ/3)、exp(-iπ/3) で出てきました。 ここで積分経路をどうすればいいのか分からなくなりました。 解答では積分経路を三つに分けていました。 経路(1):線分OA (z=x) 経路(2):弧AB (z=R*exp[iθ] 経路(3):線分BO (z=r*exp[i*2π/3]) としていました。経路(1)(2)は納得できるんですが、(3)がよくわかりません。 (3)のように、ある適切な経路をうまく選ばなくては解けないのでしょうか。 来年院試受験です。 来年院試受験です。 東大の確率の問題解いてます。 http://www.i.u-tokyo.ac.jp/edu/entra/pdf/archive/10math-j.pdf ↑の3番の確率のような複合の確率の場合、 つまり、Uが開区間(0,1)において一様分布で、X = -(1/λ)*ln Uのような場合、 (1)の分布関数と確率密度関数はどうなるのでしょうか? 自分は、まずUが(0,1)において一様分布なので(x-0)/(1-0)=xとなり、 F(x)=∫(上1下0) -(1/λ)*lnxになるとまでは考えたのですが、 この方針であってるのかわかりません。 また、確率密度関数はこれを積分すればいいことは分かりますが…。 基礎的な問題集にこのような問題がなかったので戸惑っています。 このような問題を解説付きで勉強するにはどうしたらいいでしょうか? また、参考書等、確率と確率過程に関する理解しやすい参考書があれば教えてください。 よろしくお願いします。 広義積分教えてください 次の問題説いてください (1) 空間上の(x,y,z)を極座標(r,θ,φ) x=rsinθcosφ , y=sinθsinφ , z=rcosθ に変換するときヤコビアンを求めよ (2) 広義積分 I(a)=∫∫∫(exp-(x^2+y^2+z^2))/((x^2+y^2+z^2)^a) dxdydz 積分範囲はすべて-∞~+∞ についてa=1/2の時のI(1/2)を求めよ (3) I(a)が収束するaの範囲を求めよ (4) 広義積分 J(a,b)=∫∫∫1/((x^2+y^2+z^2)^a)*(|log(x^2+y^2+z^2)|^b) dxdydz が収束するようなa,bの満たすべき条件を求めよ 積分範囲B B={(x,y,z);x^2+y^2+z^2<1/4} (1)のヤコビアンは 行列式 ∂(x,y,z)/∂(u,v,w) を解いて(r^2)sinθ というところまではとけるのですがその後がわかりません よろしくお願いします 複素関数の主値積分 複素関数の主値積分 b<2aが成り立つとき、下記積分の積分経路C上に 2個の1位の極が存在するらしいのですが、 どこなのか分かりません。 極は下記のようにz±だということは分かりました。 また、積分経路C上で主値積分を行いI=0となることを示したいのですが、 どうすればいいか分かりません。 どなたかご教授いただけたらと思います。 複素積分について 複素積分についてなんですが… ∫cos(z/2)dz 積分経路Cがどんな曲線(anycurve)でもいいので0~π+2iです。 z=x+iy x=t,y=tと置いてやってるのですがうまくいきません。 わかる方教えてください!! 複素積分の積分領域について 実定積分 ∫dθ/(a+bcosθ) (a>b>0) [0→2π] を求めよ、という問題です。 私の解き方は、z=e^(iθ)とおいて複素関数の周回積分に置き換えて、 ∫dθ/(a+bcosθ) =(2/i)∫dz/(bz^2+2az+b) となります。z={-a±√(a^2-b^2)}/bでそれぞれ1位の極なので、それを留数の計算に持ち込んで解きました。しかし、解答によるとz={-a+√(a^2-b^2)}/bだけが単位円の内部にあるのでこれだけが積分に寄与するとあります。積分領域Cの外にあるから積分には関係無いという事は分かるのですが、このz={-a+√(a^2-b^2)}/bが領域内で、一方のz={-a-√(a^2-b^2)}/bは領域外というのは一体どうやれば分かるのですか?例えば|z-1|=1のようなもっと簡単な領域ならば分かり易いのですが、複雑だとどう判断して良いのか分からなくて困っています。 この問題に限らず、特異点が領域の外にあるのか中にあるのかを判定する良い方法やコツなどを教えてもらえませんか。 複素積分 I1=∫[-∞,-∞]cos(a*x)/(x^2+b^2)dxを複素積分を使って求めます。 まず ∫[-∞,-∞]cos(a*x)/(x^2+b^2)dxの被積分関数の分子にi*sin(a*x)を (iは虚数単位)を加えても加えた部分が奇関数でかわらないので加え ると ∫[-∞,-∞]{cos(a*x)+i*sin(a*x)}/(x^2+b^2)dxとなります するとI=∫[-∞,-∞]exp(i*a*x)/(x^2+b^2)dxです。 ここで複素積分 I=∫exp(i*a*z)/(z^2+b^2)dz (積分路は実軸と虚軸の正の部分を通る 反時計回りの半径Rの半円) またI2=∫exp(i*a*z)/(z^2+b^2)dz (積分路は虚軸の正の部分のみを通 る反時計回りの半径Rの半円)を考えるとRが十分大きいとき I=I1+I2・・・(1)になります。 Iは留数定理よりI=2*π*i*Res[f,i*b]=π*exp(-a*b)/b・・・(2) I2はz=R*exp(i*θ)とおき I2=∫[0,π]exp(i*a*R*exp(i*θ))/(R*exp(i*θ)^2+b^2)dθ =∫[0,π]exp(-a*R*sinθ+)*exp(i*a*R*cosθ)*i*R*exp(i*θ)/(R^2*exp (2*i*θ)+b^2)dθ 三角不等式より 0<|I2|<∫[0,π]|exp(-a*R*sinθ+)*exp(i*a*R*cosθ)*i*R*exp(i*θ)|/|(R^2*exp(2*i*θ)+b^2)|dθ<π*R*exp(-a*R*sinθ)/|-R^2+b^2|・・・(3) ここでsinθ >0よりでexp(-a*R*sinθ)<1なので π*R*exp(-a*R*sinθ)/|-R^2+b^2|<π*R/|-R^2+b^2|となり π*R/|-R^2+b^2|はR-->∞で0なので結局 |I2|-->0 なので(1)より I1=π*exp(-a*b)/bが答えです。 これはわかるのですが、スタートで i*sin(a*x)ではなく-i*sin(a*x)を加えても変わらないですよね? そこで-i*sin(a*x)を加えて実際にやってみると (2)の部分はπ*exp(a*b)/bに変わってしまい、また (3)の部分はπ*R*exp(a*R*sinθ)/|-R^2+b^2|となってしまいこれでは R-->∞で発散するように思えます。 どこがまちがっているのでしょうか 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 複素積分の問題です。 a, cは共に実数の定数で、0<c<1, a>0, a≠1です。 (1/2πi)∫[c-i_∞, c-i_∞]1/a^zsin(πz)dzについて (1)0<a<1の場合とa>1の場合それぞれについて、この定積分を求めるための経路をz平面で考え、それぞれの経路に沿った積分がともに、この定積分と等しくなることを示せ。 (2)0<a<1の場合とa>1の場合についてこの定積分を求めよ。 よろしくお願いします。m(_ _)m ベクトルに関する線積分などの問題です ベクトル場A=x^3i+y^3j+z^3k、B=x^2i-z^2j+y^2kがある。 (i,j,kは、x,y,z方向の正の向きの単位ベクトルになります。) (1)線積分∫A・drを求めよ。経路は、(0,0,0)→(1,0,0)→(1,1,0)→(1,1,2)とする。 (2)ベクトル場Bの回転rotBを求めよ。 (3)次の面積分∫rotB・dSを求めよ。ただし、曲面Sは、xy平面上のz>=0にあって、原点を中心とする半径1の半円で囲まれた領域、S={(x,y,z)|x=0,z>=0,y^2+x^2<=1}とする。また、x>0を曲面Sの正の方向とする。 詳しい回答よろしくお願い致します。 (3)に関しては、ストークスの定理を使って線積分に直した方がいいのでしょうか? 線積分 ベクトル場A=(3x^2+6y) e_x-14yz e_y+20xz^2 e_zについて、点(0,0,0)から点(1,1,1)までの線積分∫[C]A•drを、次に示される経路Cに沿って計算せよ。A,r,e_x,e_y,e_zはベクトルである。 (1)x=t,y=t^2,z=t^3 (2)点(0,0,0)から点(1,1,1)までの直線 (3)点(0,0,0)から点(1,0,0)、ついで点(1,1,0)、ついで点(1,1,1)までの直線 です。途中式もお願いします。 複素平面上の積分 径路Cをz=εe^(iθ) [θ:π→0] とした時、径路積分 I=∫[C](1/z)dz は、以下の定理 αを含む閉曲線Kに対し ∫[K]((z-α)^n)dz は、 n=-1のとき2πi n≠-1のとき0 となる、という定理より、 I=-πi と、この本には載っているのですが、この径路Cは閉曲線でないためこの定理は使えないと思うのですが、何故このような解答になるのでしょうか? 複素積分 ∫[-∞→∞] (sinx)/x dxについて ∫[-∞→∞] (sinx)/x dx=π について教科書の解説を見ても理解出来ないところがあったので教えてください。 手持ちの教科書では次のような流れで計算をしていました F(z)=exp(iz)/zとおく F(z)はz=0に1位の極を持つのでz=0を避けるような経路C(添付図)をとる … (1) D2は半径εの半円弧である F(z)はCで正則なので∫[C] F(z)dz = 0 … (A) F(z)の経路C=R+U+L+D1+D2+D3においてR,U,Lでの積分は0(証明長くなるので省略) また、D2での積分は ∫[D2] F(z) dz = ∫[D2] {F(z)-(1/z)} dz +∫[D2] (1/z) dz と分けるとF(z)-(1/z)はz=0で正則なのでε→0のとき積分の値は0 … (2) ∫[D2] (1/z) dz は z=εexp(iθ)とおいて計算すると-πiになる (A)でX,Y→∞ ε→0とすると ∫[-∞→∞] (exp(ix)/x dx - πi =0 …(B) exp(ix)=cos(x)+isin(x)より、 ∫[-∞→∞] (cosx)/x dx + i∫[-∞→∞] (sinx)/x dx = πi 両辺の虚部をとって 虚部をとって∫[-∞→∞] (sinx)/x dx=π ここまでが教科書での解答の大まかな流れです 疑問点は以下のとおりです A:(1)で0を避けた理由 B:(2)でF(z)=F(z)-(1/z)+(1/z)と分けたのはどこから来たのか C:(2)でF(z)-(1/z)はz=0で正則とあるがz=0で1/zは定義できないのに正則? D:D1とD3は回答中で触れてないが無視していいのか E:この問題はタイトルの積分を留数定理で解けという問題だったのですが留数定理使ってないような? 長くなりましたがよろしくお願いします Frenel(フレネル)積分の証明の経路 複素積分を習うなかでフレネル積分の証明があるのですが、 なぜ積分経路を8分円(角度π/4の扇形)で考えるのでしょうか? f(z)=e^(-iz^2)として積分するからなんでしょうか? (どちみち理由は分からないのですが;) また、複素積分をするにあたり図を描いたほうがいいと言われますが、 はっきり言ってどう考えたらいいのか分かりません。 コツがあればついでに教えていただけたらと思います。 分かる方、よろしくお願いいたします。 複素積分の初歩的な質問 以下のような問題についてなのですが。。。 問 複素平面z上の単連結領域 -1<Imz<1 で、次の z=-1 から 1 までの 定積分を求めよ。 ∫[-1,1]1/(z-i)dz (被積分関数が 1/(z-i),積分範囲が[-1,1]) 僕は実数関数のノリで [log|z-i|]を原始関数としてやり答えが0になってしまったのですが 解答を見ると以下のようにやっています。 積分経路を z-i = √2*exp(iθ) (-3pi/4 <= θ <= -pi/4) としてあとは普通に積分。(答えは(pi*i)/2) つまり -1<Imz<1,-1<=Rez<=1 の範囲で被積分関数は 正則だからコーシーの積分定理より経路を変えても積分値は同じ、 -1から1へまっすぐ積分するのではなく扇形の弧を描くように 積分するということです(と思います)。 で、模範解答のやり方はそれはそれでよく納得できたのですが 僕が最初にやったやり方はなにが不味いのでしょうか。 そもそも原始関数がlog|z-i|がおかしいのでしょうか? この公式(∫f(x)'/f(x) dx = log|f(x)|)は複素数の範囲だと 成り立たない公式なのでしょうか? 複素関数の積分で被積分関数が特異点を持つときは exp(iθ)を絡ませるのが常套手段なのでしょうか? よろしくお願いいたします! 経路積分(複素数平面で) C:原点中心の単位円として、複素数α(|α|≠1)にたいして ∫c dz/(2πi) {1/(z-α)}がわかりません α=0のときが前問にあり、そのときはCが原点を囲めば1となり、Cが原点を囲まなければ、0と求められました。 z-αになると急にわからなくなり、図形的にもどこの経路を積分するのかあいまいになってしまい混乱しました。 回答よろしくお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
あー、確かに経路を順に辿っていくことを考えると、経路IIIの時、θは2πとなり、z^aで影響してきますね^^; どうも有り難うございました。