ベストアンサー ※ ChatGPTを利用し、要約された質問です(原文:極限の計算について) 極限の計算について 2009/05/20 13:07 このQ&Aのポイント 極限の計算について疑問があります。ホームページでloge=1と書かれていますが、その意味がわかりません。また、極限の計算式が変形される理由について教えてください。 極限の計算について http://w3e.kanazawa-it.ac.jp/math/category/other/kyokugen/syoumei/henkan-tex.cgi?size=3&target=/math/category/other/kyokugen/syoumei/kyokugen-frac(log(x_plus_1))(x).html このホームページを見ていたのですが、 loge=1と書いていますが、loge^1ということで1になったのでしょうか? また、lim[x→0]log(1+x)^1/x が、どうしたら、lim[x→0]log(1+x)/x というふうになるのでしょうか? 教えてください。 基礎的な質問ですいません。 質問の原文を閉じる 質問の原文を表示する みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー owata-www ベストアンサー率33% (645/1954) 2009/05/20 13:10 回答No.1 >loge=1と書いていますが、loge^1ということで1になったのでしょうか? まあ、そうです >また、lim[x→0]log(1+x)^1/x が、どうしたら、lim[x→0]log(1+x)/x というふうになるのでしょうか? 対数では log x^a=a*log xです よって、 lim[x→0]log(1+x)^1/x=lim[x→0](1/x)*log(1+x) となります 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A http://w3e.kanazawa-it.ac.jp/math/c http://w3e.kanazawa-it.ac.jp/math/category/bibun/sessen/henkan-tex.cgi?target=/math/category/bibun/sessen/en-no-sessen.html 円の接線の方程式の証明の内容について質問させて下さい。 途中で出てくる、「dy/dx」とはどういう意味ですか? xで微分した結果のところががよく分かりません。 区分求積法について 初歩的な質問ですがお願いいたします。 また、数式を書くと煩雑になってしまうので、参考リンクを貼らせて頂きます。 http://w3e.kanazawa-it.ac.jp/math/category/sekibun/henkan-tex.cgi?target=/math/category/sekibun/kubun-kyuuseki-hou.html 区分求積法で積分区間を0から1としたとき、リンク先の公式が成立しますが、lim(n→∞)1/n は0に収束するので左辺の極限値は必ず0になってしまうと思うのですが・・・。 勘違いでしたらすみません。解説をお願いいたします。 部分分数分解 http://w3e.kanazawa-it.ac.jp/math/category/suu-to-siki/seisiki/henkan-tex.cgi?target=/math/category/suu-to-siki/seisiki/bubunnbunnsuu.html を参照してほしいのです。 理解はできるのですが、 タイプ2に関して (bx+c)/(x+a)^2=A/(x+a)+B/(x+a) としない(してはいけない)理由 タイプ3に関して (cx^2+dx+e)/(x+a)^2(x+b)=A/(x+a)+B/(x+a)+C/(x+b)としない(してはいけない)理由 をおしえて下さい。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 加法定理の証明について http://w3e.kanazawa-it.ac.jp/math/category/sankakukansuu/kahouteiri/henkan-tex.cgi?target=/math/category/sankakukansuu/kahouteiri/kahouteiri-2.html こちらのサイトにある加法定理の証明について教えてください 最初の余弦定理より~っていうところは分かるのですが その後の線分PQの長さを座標成分を用いて表すとという部分がわかりません 形的に三平方の定理からとは思いますが 例えば直角三角形の斜辺の長さなら分かりますが、PQって別に直角三角形の斜辺部分でもないですし ましてやOPQは直角三角形じゃないですよね なぜPQの長さがこのように表せられるのか教えてください。 円周角の定理の普通ではない証明法 円周角の定理を証明する時,通常 http://w3e.kanazawa-it.ac.jp/math/category/kika/heimenkika/henkan.cgi?target=/math/category/kika/heimenkika/ensyuukaku.html のように場合分けをして証明をします. この様な場合分けをしないで済む証明方法をご存知の方がいたら教えて頂けないでしょうか. 中学~高校生の知識に限定する必要はありません. 絶対値の処理について ∫(1/sinx)dx の不定積分について http://w3e.kanazawa-it.ac.jp/math/category/sekibun/example/henkan-tex.cgi?target=/math/category/sekibun/example/int-frac(1)(sinx).html この計算過程においてcosx=tと置換していますよね? そして、計算を進めていくと (1/2)ln|(1+t)/(1-t)|+C・・・(1) となり、絶対値が出てきます そして、t=cosxと置換していたので戻すことで 計算が終了しますが・・・ なぜ最後は絶対値が外れているんでしょうか???? 最後が外れているならt=cosxよりその前の段階で絶対値を外して表してはいけないんですか? そもそもcosxはxがどんな値が入ろうと-1≦cosx≦1の値しかとりませんよね? つまり置換したtも-1≦t≦1の値しかとらないんだから、(1)式での絶対値の中は必ず0以上となり絶対値を外して()で表してはいけないんでしょうか? 私はこの問題を解いたとき、cosx=tと置換した時点でとる値の範囲を決めてしまったので真数の部分が負の値になることはないと思い、絶対値をつけずに解きました・・・ ∫(1/x)dx=ln|x|+C このとき絶対値がつくのはxが変数なので負の値も取ってしまうので、真数条件のために絶対値をつけていると解釈していて、そこにはなにも引っかかりませんが・・・ 上記の問題で絶対値が着くのはまったく理解できません。 どなたか私にわかるように回答お願いします。 真数は0より大きいが条件なので真数が0になってしまう場合は絶対値を付けるということなんでしょうか? 極限(数III) とある問題を解いている途中で、次のような極限に直面しました。 lim[x→+0]{(1/x-1)log(1-x)+(1/x+1)log(1+x)} 私の解答としては、 t=1/xとおく。x→+0のとき、t→∞である。 lim[x→+0]{(1/x-1)log(1-x)+(1/x+1)log(1+x)} =lim[t→∞]{(t-1)log(1-1/t)+(1+t)log(1+1/t)} 「ここで、e=lim[t→∞](1+1/t)^tを用いて、 =lim[t→∞]{(t-1)log(1-1/t)+(1+t)log(1+1/t)} =log(1/e)+loge =-1+1 =0 」 としたのですが、合っているでしょうか?特に括弧の部分は不安です。 つまり、 lim[t→∞](1+1/t)^(t+1)や lim[t→∞](1+1/t)^(t-1) もeに収束するのでしょうか?±1の誤差が気になります。でもt→∞だからこれは無視できるのでしょうか…。 あと、括弧内の2行目から3行目へは、何の断りもなく=で結んでもいいでしょうか?e^xの連続性とか述べた方が無難ですか?どなたか教えてください。 u(x1,x2)、uのxiでの偏微分をu[i]、 uiをさらにxjで偏微分したものをu[ij]、 s=u[1]/u[2]としたとき、ds/dx1を求めよという問題が分かりません。ただしu(x1,x2)は十分な回数微分できます。 自分でやると、2変数関数の合成関数の偏微分の公式、つまり http://w3e.kanazawa-it.ac.jp/math/category/bibun/henbibun/henkan-tex.cgi?target=/math/category/bibun/henbibun/henbibun-kosiki.html の下から2番目の公式を使って ∂s/ ∂x1=(1/u[2])u[12]-{u[1]/u[2]^2}u[21]となりました。(問題文のdは ラウンドdの書き間違いと 解釈しました ) ですがある教科書には添付しました画像にあるように dsを求めてからdx1で両辺割って求めてます。しかも右辺が私のやったものと違います。 一体全体なにが間違いなのか分かりません。また、なぜ教科書でははじめに全微分っぽいことをしているんでしょうか?そもそもuは2変数関数なのになぜラウンドdではなくただのdで書いているんでしょうか?? 数学はこのとおり苦手なので教えていただけたらうれしいです。 対数・指数関数の極限値 (1)lim(h→0)log10(1+h)/h (10は低) (2)lim(h→∞)(1-2/x)^x の極限値を求める問題で、私は苦手なのですが… (1)は解はlog10e、でlim(h→0)loge(1+h)/h=1という極限公式を利用するのだと思いますが,どう変形したらよいのか、ちょっとわかりませんでした。 (2)は解は1/e^2、でlim(h→∞)(1+1/n)^n=eという極限公式を利用するのだと思いますが,どう変形したら解になるのか、できませんでした。 よろしければ、アドバイスを頂きたいです。お願いします。 数学の問題です。合ってるかの確認です。 lim(x→0)log(1-x)/x {log(1-x)}/x = log{(1-x)^(1/x)} より lim[x→0] (1-x)^(1/x) x = -t とおくと lim[t→0] (1+t)}^(-1/t) = lim[t→0] {(1+t)^(1/t)}⁻¹ = e⁻¹ なので lim[x→0] log{(1-x)^(1/x)} = loge⁻¹ = -1 となりました。宜しくお願いします。 数学の質問です。お願いします。 lim(x→0)log(1-x)/x の極限の求め方? {log(1-x)}/x = log{(1-x)^(1/x)} より lim[x→0] (1-x)^(1/x) x = -t とおくと lim[t→0] (1+t)}^(-1/t) = lim[t→0] {(1+t)^(1/t)}⁻¹ = e⁻¹ なので lim[x→0] log{(1-x)^(1/x)} = loge⁻¹ = -1 あってますか? 三角関数の合成 念のためですが以下のサイトで「ただし, tanα= b a 」「ただし, tanβ= a b 」とあるのはそれぞれ「b/a」「a/b」の誤りですよね。 すみませんが、よろしくお願いいたします。 http://w3e.kanazawa-it.ac.jp/math/category/sankakusansuu/kahouteiri/gouseikousiki.html 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム アクセサリー電卓で三角関数 基本的な質問になるのですが、MSアクセサリの電卓で以下URLの三角関数の計算をする場合 http://w3e.kanazawa-it.ac.jp/math/category/sankakukansuu/image/tr-30-60.gif 例えばcosの計算なら(1)30をクリック→(2)cosをクリック→(3)*2をクリック→(4)=をクリックすれば答えが1.7320・・・と表示されます。 それでは、辺2と√3から30°を導くにはどのような手順となるのでしょうか? 返信お待ちしております。 複素積分、積分路に関する問題が解けなくて困っています。 複素積分、積分路に関する問題が解けなくて困っています。 来年大学院受験です。 問題は http://www.i.u-tokyo.ac.jp/edu/entra/pdf/archive/10math-j.pdf の第2問です。 (1)不定積分はすぐに解けるのですが、 (2)の積分経路はどうしていいかわかりません。 自分の途中までの回答としては、 (1)はtan^(-1)x + C, (1/2)*log(x^2+1) + C (2)はS1,S2,S3,S4の経路をそれぞれ z(t)=1+it (-1≦t≦1) z(t)=-t+i (-1≦t≦1) z(t)=-1-it (-1≦t≦1) z(t)=t-i (-1≦t≦1) とし、それぞれtで微分すると、 dz=idt dz=-dt dz=-idt dz=dt となり、それぞれ、 I_1 = ∫(-1~1) 1/(1+it-(a+ib)) * idt I_2 = ∫(-1~1) 1/(-t+i-(a+ib)) * -dt I_3 = ∫(-1~1) 1/(1+it-1-it-(a+ib)) * -idt I_4 = ∫(-1~1) 1/(t-i-(a+ib)) * dt という風に表せると思いますが、 ここでI_1は定積分すると log|(i+1-a-ib)/(-i+1-a-ib)|となりましたが、このままでいいのでしょうか? 何かもう少し変化させたりとかできないのでしょうか? 少々行き詰ってしまったので、指標をいただければ嬉しいです。 よろしくお願いいたします。 極限の計算 高校2年です。 limg(x)=limx(logx)^2 x→∞ の計算を教えて欲しいです。苦手なのでできれば詳しく、方針などもお願いします。 極限の計算 limx^3/x^2-3 x→√3±0 の計算を教えて欲しいです。 極限を計算する lim{n→∞}(1-(3/(5n)))^(4n) この関数の極限を求めたいのですが ネイピアの定理を用いるのかな?程度でしかわかりません。 例題にはこのような問題はなく、解き方に困っています。 答えだけでなく、解き方を教えてください。 よろしくお願いします。 極限の計算です。 初めまして。よろしくお願いいたします。 lim[x→a]{(xsin^2(a)-asin^2(x))/(x-a)} の極限値の計算です。 x-a=h とおいて計算をしようと思いましたが,上手くいきません。 よろしくご教示下さい。 極限値の計算 以下の極限値の計算を考えています。 cを定数として、 lim_n→∞ (c^n-1)(log(c^n-1)/n ー log c) を求めよ。 普通にやると、n→∞で (c^n-1)→∞ (log(c^n-1)/n ー log c)→n log c/n ー log c=0 で、∞×0の計算になってしまいうまく求まりません。 具体的な値を代入して行くとどうやら0に漸近するのは確かなようなのですが、解析的に表現できずにいます。 よろしくお願いします。 極限値の計算 limx→0((sinax)^2/x^2)の極限値の求め方を教えていただけますでしょうか? よろしくお願いいたします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など