• ベストアンサー

数学の質問です。お願いします。

lim(x→0)log(1-x)/x の極限の求め方? {log(1-x)}/x = log{(1-x)^(1/x)} より lim[x→0] (1-x)^(1/x) x = -t とおくと lim[t→0] (1+t)}^(-1/t) = lim[t→0] {(1+t)^(1/t)}⁻¹ = e⁻¹ なので lim[x→0] log{(1-x)^(1/x)} = loge⁻¹ = -1 あってますか?

質問者が選んだベストアンサー

  • ベストアンサー
  • gamma1854
  • ベストアンサー率52% (307/582)
回答No.1

lim ln(1-x)/x=lim -1/(1-x)=-1. です。 ーーーーーーーー

shidoukai_chi
質問者

お礼

有難うございます。

関連するQ&A