- ベストアンサー
スペクトル分解の一意性の証明について
TがVの正規変換であるとき Tの相異なる固有値全部をβ_1,β_2,・・・,β_kとし 対応する固有空間をW_1,W_2,・・・,W_kとする W_iへの射影子をP_iとすれば P_1+P_2+・・・+P_k=I P_iP_j=0 (i≠j) T=β_1P_1+β_2P_2+・・・+β_kP_k が成立する。これを正規変換Tのスペクトル分解という。 スペクトル分解は一意的である。 実際、射影子P'_1,P'_2,・・・,P'_kによるもうひとつのスペクトル分解 P'_1+P'_2+・・・+P'_k=I P'_iP'_j=0 (i≠j) T=β_1P'_1+β_2P'_2+・・・+β_kP'_k があったとしよう。 P_i,P'_iがそれぞれ部分空間W_iW'_iへの射影子であるとすれば TのW_i,W'_iへの制限はどちらもスカラー変換β_iIであるから W_i=W'_i よってP_i=P'_i ("逆"の証明は略) と教科書にあったのですが、最後、なぜW_i=W'_iが言えるのかがわかりません。 TのW_i,W'_iへの制限はどちらもスカラー変換β_iIであることを用いてW_i⊂W'_iかつW_i⊃W'_iを示せるのですか? W_i⊃W'_iのほうに関しては x'_i∈W'_iとすると T(x'_i)=β_i(x'_i)であるから、x'_iはTの固有値β_iに対する固有空間W_iの固有ベクトルであるといえる。よってx'_i∈W_i つまりW_i⊃W'_iである。 とできるかな?とは思ったのですが、もう一つが・・・。 W_i⊃W'_iであることとVが直和であることを用いてW_i=W'_iを示せるかな?とも思ったのですが、なんとなくなりそうってだけで、どのように厳密に示せばいいのかよくわかりません。 教科書にもさらっと書いてあるだけですし、おそらく簡単なことなのでしょうが私にはよくわからないです・・。 どなたか W_i=W'_i よってP_i=P'_i の証明教えていただけないでしょうか。 よろしくお願いいたしますm(_ _)m
- みんなの回答 (3)
- 専門家の回答
お礼
回答ありがとうございます! なるほど、そのようにすればいいのですね。 おかげで理解できました。ありがとうございます。