- 締切済み
内接円と傍接円の問題
△ABCの内接円OとABの接点をD、∠A内の傍接円O´とAB、BCとの接点をそれぞれE,Fとします。 またO、O´の半径をそれぞれr,r´とし、BC=a、CA=b、AB=c、s=1/2(a+b+c)とします。 (1) AD=s-a、BD=s-b、BF=s-c、AE=s、DE=aを証明せよ。 (2)△ABCの面積をSとすると、S=rs=r´(s-a)を証明せよ。 (1)を自分なりに考えてみたのですが、途中で詰まりました。 ACと円Oとの交点をGとすると、 AD=AG=x BD=BF=y FC=CG=zとおける。 するとy+z=a…(1)、z+x=b…(2)、x+y=c…(3)となる。 ((1)+(2)+(3))÷2より、x+y+z=1/2(a+b+c)=s…(4) (4)-(1)よりx=s-a=AD (4)-(2)よりy=s-b=BD でもBD=BFであるため、BF=s-cがありえないと思うのですが、 BF=s-cの証明が出来ないと後につながりません; (2)を含めた後の証明の仕方、または私の証明の訂正を宜しくお願いします。 因みに高1で、まだ三角関数は習っていません。
- みんなの回答 (2)
- 専門家の回答
お礼
ようやく納得しました。傍接円・内心円の中心から下ろした垂線とBCとの接点は別物だったんですね。 丁寧な証明有難う御座いました!