- ベストアンサー
デルタ関数の証明
[δ^(n)(t)]のフーリエ変換が(iω)^nになることを示せ。 という問題で ∫(-∞,∞)δ^(n)*e^(-iωt)dt =[δ^(n-1)e^(-iωt)](-∞,∞)+iω∫(-∞,∞)δ^(n-1)*e^(-iωt)dt =iω∫(-∞,∞)δ^(n-1)*e^(-iωt)dt=・・・・・ =(iω)^(n)と計算できると思うのですが [δ^(n-1)e^(-iωt)](-∞,∞)の部分が0になるなんてどうしたら言えるのでしょうか? それとも証明の仕方が間違っているんでしょうか? そもそもデルタ関数の微分とはどういうものなのでしょうか? 問題にははじめに δ(t)=lim(N→∞)g_N(t) δ'(t)=lim(N→∞)g'_N(t) g_N(t)=(N/π)^(1/2)e^(-NT^2) N=1,2,・・・・・ と与えられていますがどうもよくわかりません。 わかる方お願いします。
- みんなの回答 (4)
- 専門家の回答
お礼
わかりました。 二度も助けていただきありがとうございました。