偏微分について
偏微分とは何をするための作業なのかを教えていただきたいです。あくまでも大学入試を受けるという範囲の話ということになります。
例えばC:楕円x^2/3+y^2=1について、yを固定して(yを実数と見て)xで微分すると、《質問(1)この表現は入試の解答用紙に使ってよいのでしょうか?それとも、偏微分すると、と書くべきでしょうか》2/3x+2yy'=0となります。この時y'に3を入れたとすると、x,yの一次方程式になりますが、この方程式とCを連立させるとCにおいて傾きが3となる接線が得られる点の2解になるようですが...《質問(2)結局この方程式はどういう意味だったのでしょうか?》
また積分方程式(微分方程式?)の問題で、
f(x)が微分可能でg(x)=logf(x)とする。
・・・・・・・・・・・・・・・・・・・・.....
・・・・・・・・・・・・・・・・・・・・⇔g(x+y)=g(x)+g(y)-xy
これをxを固定してyで微分すると...
とありましたがこれも偏微分ですよね?どうもこの表現は学校では習わないので、入試本番で使ってよいのか気になります。あと偏微分ではないのですが、質問(3)この問題でlogは微分可能、f(x)も微分可能、よってg(x)は微分可能な二つの関数の合成関数だから微分可能である。というのは入試で使ってよいのでしょうか?
色々と書いてしまいましたが、(特に(2)は言っている意味が分からないかもしれませんが...)何よりもお聞きしたいのは、やはり大学入試における偏微分の使い方と知識です。学校の授業ではどうも不足すぎる気がするので、ぜひともアドバイスお願いします。