締切済み 最適解 2008/01/08 23:35 次の線形計画問題の最適解と最適値の求め方が理解できません。 max 3x[1]+2x[2]+2y s.t x[1]+x[2]+2y≦6 2x[1]+x[2]+y≦10 x[2]+y≦3 x[1],x[2],y≦0 みんなの回答 (2) 専門家の回答 みんなの回答 incd ベストアンサー率44% (41/92) 2008/01/09 01:00 回答No.2 >>x[1],x[2],y≦0 は正しいですか? 確認してください。 これによると、目的関数 3x[1]+2x[2]+2y は決して0より大きくはなりません。 これが丁度0になるのは x[1]=x[2]=y=0 の時ですが、これは全ての制約を満たします。 よってこれが解です。 x[1],x[2],y≧0 なら話は違いますが。。。 質問者 補足 2008/01/09 02:02 すいませんx[1],x[2],y≧0です。 お詫びします。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 Tacosan ベストアンサー率23% (3656/15482) 2008/01/09 00:55 回答No.1 ただの線形計画法ですよね? 「最適解の求め方」といってもいっぱいあるんですが, そのうちの「どの求め方」の「どこ」が理解できないんでしょうか? 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 線形計画法の解について! 線形計画法の解、シャドウ価格の求め方がわからなくて、困っています。 問題は、以下のとおりです。 (線形計画法とシャドウ価格) 次の線形計画法の解、各制約のシャドウ価格を求めなさい。 制約条件 2x+y≦7, x+3y≦6, x≧0,y≧0 のもとで、目的関数 Z=x+y を最大化せよ。 線形問題 線形計画問題で質問です。 max 3x[1]+2x[2]+2y 制約条件 x[1]+x[2]+2y≦6 2x[1]+x[2]+y≦10 x[2]+y≦3 x[1],x[2],y≧0 これの最適解と最適値を求めたいのですが どう計算していけばいいのか困っています。 まずは制約領域を書こうとしたのですが、変数が3つで、3次元になり それをどう使うのか、それとも変数を減らすことがいいのかと 線形代数:解が特殊解+一般解 現在復習として線形代数をやっているのですが、解が特殊解+一般解になるというものがあまり理解できません。 m×n行列A、n次の列ベクトルx、m次の列ベクトルbからなる Ax=b という方程式があるとします。 この方程式が解を持つならば、その一般解は1つの特殊解x_1と、対応する同次方程式の一般解x_0との和x=x_1+x_0で与えられるという定理があります。 この証明として、Ax_1=b, Ax_0=0とすれば、A(x_1+x_0)=Ax_1+Ax_0=b+0=b; だから、x=x_1+x_0はAx=bの解になる。 これは、証明中では「Ax_0=0とすれば」と書いてあるから成り立つのは理解できますが、定理の中では同次方程式の一般解がx_0=0と限定はしていません。 仮にx_0=0でない場合、例えばrankA=r(r<n)とすると、一般解はx_0=t_(r+1)x_(r+1)+t_(r+2)x_(r+2)+…+t_nx_n (t_(r+1)~t_nは任意の定数) というように、解はx_(r+1)~x_nまでの一次結合になります。 つまり、A(x_1+x_0)=Ax_1+Ax_0=b+x_0(≠0)≠bということになります。 これは、特殊解と一般解の和がこの方程式を満たしていないことになります。 しかし、前に微分方程式なんかを習っていたときも特殊解と一般解の和を答えとして出してた記憶もあるので、成り立たないはずはない・・・?と思いますがまったく納得いきません。 自分の説明が間違っているとは思うので、何か間違っている点がわかる方いましたらご指摘お願いします。 見づらくわかりにくい文章で申し訳ないです・・・。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 非線形連立方程式の解 数学に詳しい方、どなたか教えて下さい。 下記のような非線形連立方程式を解こうと、エクセルのソルバーを使って試みましたが、 解が得られませんでした。 ちなみに初期値は(x,y)=(1,1)で実行しました。 12171060/e^((0.03+x)/y)+4847040/e^((0.06+x)/y)+762696/e^((0.09+x)/y)-1=0 …(1) 13523400/e^((0.02+x)/y)+5385600/e^((0.04+x)/y)+847440/e^((0.06+x)/y)-1=0 …(2) 非線形連立方程式の解法、解がある条件などについてまったくの無知な為、 本当に解がないのか、単に初期値の設定が悪いために収束しないのか判断できません。 この方程式に解があるのかどうか、解が存在するのならどうやれば数値的に求められるのか、 どなたか教えて頂けますでしょうか。 解と係数の関係について s^2 + t^2 =1のとき(t > 0とします) xの2次方程式 (1 + t^2)x^2 -2sx + (1-2t^2) =0 で判別式D=4s^2 -4(1+t^2)(1-2t^2)=2t^4 >0より2解が存在して で、このxの方程式の2解をα、βとして(α<β) α=(s-√2t^2)/(1+t^2) β=(s+√2t^2)/(1+t^2) より、β-α =2√2/(1+t^2) になると解答に記載されていて、これは理解できるのですが、 ここで解と係数の関係から、α+β=2s/(1+t^2)、αβ=(1-2t^2)/(1+t^2) ここで(β-α)^2 = (β-α)^2-4βαを計算して、β-αを求めるたのですが、値が違います。 解と係数の関係から求めた、αβ=(1-2t^2)/(1+t^2)の値と、普通に解の公式から、 求めたαβの積=(s^2-2t^4)/(1+t^2)^2と違っています。 この原因がわかりません、なんで「解の公式」から出した値と「解と係数の関係」から出した値が違うのですか? 連立一次方程式の一般解 現在、大学で線形代数を学んでいる者です。 問: 特殊解を見出すことによって、次の連立一次方程式の一般解を求めよ。 ⅹ1+4ⅹ2-ⅹ3+ⅹ4=1 2ⅹ1+5ⅹ2-2ⅹ3+ⅹ4=1 -ⅹ1+2ⅹ2+ⅹ3+ⅹ4=1 3ⅹ1+9ⅹ2-3ⅹ3+2ⅹ4=2 *以下の()内は列ベクトルを示す (解答)ⅹ4の係数を見れば、特殊解ⅴ0=(0000)にとれることが見える。 以下の計算は省略 : : 求める一般解は (ⅹ1ⅹ2ⅹ3ⅹ4)=s(1010)+t(011-3)+ⅴ0 =s(1010)+t(011-3)+(0000) (s、tは任意のKの元) というように教科書には書かれているのですが、なぜ、特殊解ⅴ0=(0000)と決められるのかがわかりません。わかる方、ぜひ、理由を教えてください。 シンプレックス解法の問題 大学で生産計画の問題で次のような問題が出て解き方がいまいちわかりません。答えと解き方をなるべく分かりやすくお願いします。 問題:次の一般型生産計画法を2段階シンプレックス解法で解 け。 目的関数 z=1080y1+600y2+900y3 →最小化する 制約条件式 9y1+4y2+3y3≧70 4y1+5y2+10y3≧120 y1 y2 y3≧0 (1)第1段階線形計画法を定式化し、最適解を求めよ。 (2)第2段階線形計画法を定式化し、最適解を求めよ。 つぎの数理計画問題を解いてください。 つぎの数理計画問題を解いてください。 max ax + (1-a)y subject to 2x + y ≦ 3 x + y ≦ 2 x≧0, y≧0 (1) この問題に対するKuhn-Tucker条件を示せ。 (2) (x, y) = (1, 1) が最適解となるaの区間を示せ。 よろしくお願いします。 なぜ、双対問題(双対性)を考えるのですか? 現在、線形計画法を勉強中で、よくわからないことがあります。 例えばこのような問題があるとしまして、 主問題 max Z = 6X1 + 4X2(例えば収益を最大にしたい…) s.t. 2X1 + X2 =< 70 3X1 + 4X2 =< 180 X1,X2 => 0 双対問題 min W = 70Y1 + 180Y2(例えば費用を最小にしたい…) s.t. 2Y1 + 3Y2 => 6 Y1 + 4Y2 => 4 Y1,Y2 => 0 主問題の最適な目的関数値 Z と、 双対問題の最適な目的関数値 W は、必ず一致することは、 シンプレックス法で実際に解いて確認できます。できました。 (参考書として読んでいる本の、標準形での証明・説明はいまいちわかりませんでした…。) ですが、 なんらかの収益を最大にしたい…という問題を定式化して解けば、 その収益を最大にしたいときの最適解・最適値を求められるなら 主問題の方だけ充分ではないのでしょうか? 上記の式の例ですと式の規模(?)に大した違いはないですが、 問題によって、双対問題に作り直した方が計算しやすい? といったようなメリットがあるのですか? なぜ、双対問題を考えるのか、どなたか分かりやすく教えて頂けませんでしょうか。 連立一次方程式の解の幾何学的理解 線形代数に関連して、 連立一次方程式 a1x+b1y+c1z=d1 a2x+b2y+c2z=d2 a3x+b3y+c3z=d3 の解を求めることは空間的にどのような図形の交点を求めることなのか、解の有無で場合分けしてそれぞれの交わり方の例を図示せよ。 という問題があるのですが、これは3つの平面の交わりを考えれば良いのでしょうか? いまいち理解ができないので、ご助力いただければと思います。 この連立方程式の変な解の呼び名は? 連立方程式 w+x+2y+4z=3 3w+x+6y+2z=3 -x+2x-2y+z=1 の解は (w,x,y,z)=(1/2,1/2,0,1/2)+k(-2,0,1,0) という非自明解でも解空間 {(w,x,y,z)∈V;(w,x,y,z)=(1/2,1/2,0,1/2)+k(-2,0,1,0)} が線形部分空間にならない特殊な解ですよね。 それで解空間が線形部分空間にならないと困る(?)ので この連立方程式の解空間は {(w,x,y,z)∈V;(w,x,y,z)=k(-2,0,1,0)} で基底は{(-2,0,1,0)}はと定義するのですね。 このような変な非自明解の呼び名はあるのでしょうか? 2階線形常微分方程式の解は、なぜ。 2階線形常微分方程式は、y=exp(λx)と仮定して解くと、解を2つ求めることができますが、その各々が解であることは明らかですが、なぜその各々の解の線形結合も解になるのでしょうか?また、その各々の線形結合は、絶対に解になるのでしょうか?それとも条件付きでしょうか? 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 1階線形偏微分方程式の一般解 数学のことでちょっと皆様のお知恵を拝借いたしたく質問します。 次の偏微分方程式の一般解の求め方を教えてください。 ∂T(x,t)/∂t + (q(t)/S)(∂T(x,t)/∂x) = c(T_w(x,t) - T(x,t)) c,S:定数 僕の所有する参考書によるとこの種の方程式は ラグランジュの偏微分方程式と呼ばれていて、 ちょっとだけ一般解の求め方が書いてありました。 しかし、どうしても一般解にたどりつけません。 その方法とは、偏微分方程式 P(x,y,z)(∂z/∂x) + Q(x,y,z)(∂z/∂y) = R(x,y,z) に対して連立補助方程式 dx/P = dy/Q = dz/R を解いた解を f(x,y,z) = a, g(x,y,z) = b (a,bは積分定数) とする。φを任意の関数として、一般解は φ(f,g) = 0 である。 という解法です。しかし、T_wが邪魔でうまくいかないです。 詳しい参考書を手に入れようにも近くに本屋がないのでお手上げです。 どなたかご教授お願いしますm( _ _ )m 微分方程式の解き方が分からず、困っています。 現在、試験に向けて微分方程式の勉強をしているのですが、下記の問題の解き方が分かりません。 教科書を参考に(1)は変数分離系、(2)は同次形、(3)は線形で解こうとしましたが、どの問題も積分するところで複雑な式になってしまい、解けれません。 分かる問題だけでも良いのでアドバイス、解き方を教えてください。よろしくお願いします。 (1)次の微分方程式の一般解を求めよ dy/dx=y^2+1 (2)次の微分方程式の一般解を求めよ y'=(y/x)(log(y/x)+1) (3)次の微分方程式の解でt=0のときx=1の条件を満たすものを求めよ x'cost+xsint=1 微分方程式の解曲線 次の初期値問題x'=Ax,x(0)=(c1,c2)の解曲線をかくという問題があります Aは画像の左の行列です 画像のx^2+y^2=e^(2ct)(c1^2+c2^2)のところまでは理解できるんですけど、それからどう解曲線をかくまでに至るかが分かりません(2)と(5)は図形からも理解できるんですが、それ以外が全く書き方が分からないので教えてください 全部じゃなくて1つでもいいので分かる方お願いします 線形計画問題を単体法を使って解く問題です。 タブローを使ってとこうとしたのですが制約式にx_2の項がない場所があったため0で割れず行き詰まってしまいました。 解答も解説もなく行き詰まっているため、親切な方詳しい解答・解説をおねがいします。 主問題 Max 2x_1+3x_2+x_3 s.t.x_1+x_2+x_3≦1 -2x_1+x_3≧1 x_1,x_2,x_3≧0 1)単体法を用いて解き、最適解と最適値を過程を記し求めよ。 2)双対問題を記し、1)の結果と相補性定理を用いて最適解を求めよ。 3)ある非負の実数kを用いて主問題の目的関数を(2+k)x_1+3x_2+x_3と変化させた線形計画問題をP'とする(制約式は同じ) 1)で求めた最適解がP'の最適解で在り続けるためのkの範囲を求めよ。 数学 対数方程式の解の存在条件 数学 対数方程式の解の存在条件 xの方程式{log2(X^2+√2}^2 -2log2(X^2+√2)+a=0・・・(1) が実数解を持つとき (1)aの範囲を求めよ (2) aが(1)で求めた範囲の値をとる時に(1)の実数解の個数を求めよ。 ただし、aは定数とする という問題があったのですが、(2)が回答を読んでも理解できません。 (1)はわります。 log2(X^2+√2をTとおくと、Tは2分の1以上・・・(2) (1)は-T^2+2T=aとあらわすことができ、 放物線Y=-T^2+2T と直線Y=aの共有点が存在するための条件だから、(2)の条件とあわせて、aの値の範囲というのは1以上・・・(1)の答え というのはわかります。 問題は(2)です。 解答では、 T=2分1のときX=0・・・(3) T>2分1のときX^2>0・・・(4) よって、 a<4分3, a=1のとき2個 a=4分3 のとき 3個 4分3<a<1のとき 4個 というのが解答なのですが、なんでこの答えになるのかがわかりません。 まず、(3)と(4)は式自体は理解できますが、これが個数とどんなかかわりがあるのか いまいちピンときません。 私は、放物線Y=-T^2+2T と直線Y=aとの個数だから a=1, a<4分3のとき1個・・・(5) 4分3<=a<1のとき2個・・・(6) なのかと思ったのですが、なぜちがうのでしょうか??? T=2分1のときX=0・・・(3)でXは1個の解をもち T>2分1のときX^2>0・・・(4)なおので2個の解をもつので、 (5)の1個×2=2 (6)の2個×2=4 になったのでしょうか?だとすると3個ってどこからでたのでしょうか?? ちなみに、黄色チャートの数がく2Bの重要例題147です 線形代数の問題 線形代数の問題なんですがわからなくて困ってます! 次の連立1次方程式が(1)ただ一つの解をもつ(2)無数の解をもつ(3)解をもたない、ようにcの値をそれぞれ定めよ X+Y-Z1 2x+3y+cz=3 X+cy+3z=2 なるべく早めにお願いします。 ズバリ解とは! 数学の問題を解いていた時のことです。 「x、yは解をもたない」と問題文に書いてありました。 解をもたないとはどういう意味なのですか? 解けませんこの微分方程式 いつもお世話になっています。 独学でなんとか線形微分方程式や同次型まで理解しています。今 y'+(1/x)y+y^2-1/x^2=0 という方程式を解こうとしています。特殊解はとりあえず1/xが見つかりました。問題は一般解を求めるのですが、試しに最終的に求めたい 線形結合の解yをy=k+1/xとおいて(kが一般解です)代入し、 kとxの微分方程式を作りました。 果たしてここまであっているのかわからないのですが、ここから手が止まっています。また変数変換したりするのでしょうか。 わかる方詳しく教えていただけないでしょうか。お願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
補足
すいませんx[1],x[2],y≧0です。 お詫びします。