incdのプロフィール
- ベストアンサー数
- 41
- ベストアンサー率
- 44%
- お礼率
- 37%
- 登録日2006/09/18
- 極限について。(ロピタルの定理?)
次の解が導出できません。 lim (d/dn)r^(n+2)=r^2*Logr n→0 lim (d/dn)r^n=Logr n→0 F=A*r^t*cos(tθ)+B*r^t*sin(tθ) Fにおいてt→0のとき F=A*Logr+B*Logθ 一番上はr^(2+n)を真中はr^2を極限にとばすみたいです。これはロピタルの定理なのでしょうか?まったく変形がわかりません。 一番下はロピタルの定理らしいのですがこれまたわかりません。 どなたかお願いします。あせってます。
- 互いに独立な時の確率密度関数
大学で出された問題でさっぱり分からなかったので、お力添えください。 (問題) 正規分布に従う確率変数XとYは、ともに分散は1であるが、Xの平均値は-1、Yの平均値は1である。 互いに独立であるX、Yから作られる確率変数ZをZ≡X/√2+√2Yで定義するとき、Zの確率密度関数pz(z)を求め、その概形をグラフに描け。 簡単だとは思いますが、よろしくお願いします。
- 証明、命題について(´Д`。)
2つの三角形ABCとA'B'C'についてAB=A'B', AC=A'C'であり、∠A>∠A'であるならば、BC>B'C'である。と言う証明問題がどうしてもわかりません(´Д`。)グスン (1)∠B=∠B'、∠C=∠C'、AB=A'B'の場合 BC=B'C'ではない、たとえばBC>B'C'であるとする。 ここまでが問題です(´Д`。)グスン 先生がBC上にBD=B'C'となるように点Dをとり、△ABDと△A'B'C'で・・・ 背理法もつかわないといけないらしいんですが・・・よくわかりません。 よろしくお願いします。
- 締切済み
- 数学・算数
- sbarukamyu
- 回答数1
- 互いに独立な時の確率密度関数
大学で出された問題でさっぱり分からなかったので、お力添えください。 (問題) 正規分布に従う確率変数XとYは、ともに分散は1であるが、Xの平均値は-1、Yの平均値は1である。 互いに独立であるX、Yから作られる確率変数ZをZ≡X/√2+√2Yで定義するとき、Zの確率密度関数pz(z)を求め、その概形をグラフに描け。 簡単だとは思いますが、よろしくお願いします。