Q∩[0,1]全体の測度=Σ[r∈Q∩[0,1]]点{r}の測度=0は何故?
Q∩[0,1]全体の測度=Σ[r∈Q∩[0,1]]点{r}の測度=0
と本で見かけたのですが測度とは関数の事ですよね。だからこれは
Q∩[0,1]全体の測度による像=Σ[r∈Q∩[0,1]]点{r}の測度による像=0
という意味ですよね。
測度とは
「(Ω,B)を可測空間(Bはσ集合体)とする時,f:B→Rが(Ω,B)上の可測
⇔
(i) ∀A∈B,f(A)∈{r∈R;0≦r}∪{+∞},f(φ)=0
(ii) ∀m,n∈N (m≠n), B∋b_m,b_nは互いに素 ⇒ f(∪[k∈N]b_k)=Σ[k=1..∞]f(b_k)」
の事だと思います。
点{r}の測度fによる像=0だから
Σ[r∈Q∩[0,1]]点{r}の測度fによる像=0なんだと思います。
どうして
(点{r}の測度fによる像)=0
と言えるのでしょうか?
つまり,
(Q∩[0,1]全体の測度fによる像)=f(∪[b∈Q∩[0,1]]{b})=Σ[b∈Q∩[0,1]]f({b})と変形できると思いますが
これからどうしてf({b})=0が言えますでしょうか?
推測ですが
f({b})=#{b}/#(Q∩[0,1])=1/(アレフ0)=0と乱暴に計算してもいいでしょうか?
(上の定義からはf({b})=#{b}/#(Q∩[0,1])と書ける事すらも言えてませんが…)
お礼
言葉足らずな質問に回答ありがとうございます。 因みに聞きたかったのはルベーグ測度のことでした。