• ベストアンサー

可換性について

Euler-Lagrange微分方程式を導出する際に、微分と変分の可換性を用いるんですけど、微分と変分の可換性を証明するのはどうすればよいのでしょう?それと、積分と変分の可換性を証明すのもどうすればよいのでしょう? 教えてください。よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

最初の要点だけを。。。 I=∫[x0,x1]L(x,y,dx/dy)dxが停留値を持つような関数をy(x)とします。2点[x0,x1]を通る一つの道筋をY(x)とし、この関数が限りなくy(x)に近いとしましょう。点xにおけるY(x)とy(x)の差をδy(x)=Y(x)-y(x)とします。ここでδは変分と呼ばれます。次に関数Y(x)、y(x)の点xでの微分の差をδ(dy/dx)=dY/dx-y/dxとします。そうするとδ(dy/dx)=dY/dx-dy/dx=d/dx(Y-y)=d/dx(δy)となり、これは変分δと微分演算子d/dxは交換可能ということを意味していますね。

hikaruaga
質問者

お礼

ありがとうございました! とても参考になりました!