- 締切済み
台形公式によるf(x)の近似値
区間[a,b]における連続関数f(x)の低積分S=∫[a→b]f(x)dxの値を求めたい。 [a,b]を幅(b-a)/nの小区間にn当分し、その分点をa=a0<a1<a2<・・・<an-1<an=bとする。 各小区間上に作られる台形の面積の和 Sn=nΣk=1 {f(a(k-1)+f(ak)}/2・(b-a)/n をSの近似値とする。この近似法を台形公式という。 区間[0,π/2]を3等分して、台形公式による∫[0→π/2]sinxdxの近似値S3を求めなさい。 nΣk=1 {f(a(k-1)+f(ak)}/2の部分の計算の仕方がわかりません。 Sn=nΣk=1 {sin(k-1)+sin(k)}/2・(b-a)/n このような形で計算してよいのでしょうか?? 初歩的な質問ですがよろしくお願いします。
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- debut
- ベストアンサー率56% (913/1604)
回答No.1
お礼
返信ありがとうございます。 遅くなって申し訳ございません。 なるほど・・・。とてもわかりやすかったです! ありがとうございました!