• ベストアンサー

t×cos(wt)のラプラス変換が分かりません。

t×cos(wt)のラプラス変換が分かりません。 初歩かもしれませんが、どなたかヒントだけでも教えていただけないでしょうか? 普通に定義に従って積分しようとしましたがつまずきました。それとも積のラプラス変換の解き方みたいなものでもあるのでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
  • ringouri
  • ベストアンサー率37% (76/201)
回答No.4

これ結構難しいです。初歩レベルではないですね。 積分記号が煩わしいので0から∞までの積分を|で記します。 (1) 形式的な導き方 dF(s)/ds=-|exp(-st)・t・f(t)dt を示すには、 左辺の定義どおり書き下して、 dF(s)/ds=lim[h→0]{(F(s+h)-F(s))/h} =lim[h→0]{|exp(-st)・(exp(-ht)-1)/h・f(t)dt} =-|exp(-st)・t・f(t)dt ∵exp(-ht)=1-ht+h^2・t^2/2!-.... だから (exp(-ht)-1)/h=-t+h・t^2/2!-h^2・t^3/3!+.... ここでh→0とする。 収束のことを考えると、厳密な証明は煩雑になりますが、通常の仮定と同様にf(t)の絶対値が指数オーダーで抑えられていれば上記は正しいです。 (2) t・cos(ωt)を直接計算する方法 これもかなり面倒です。 ラプラス変換においては、裏関数F(s)とG(s)の掛け算が表関数の合成積(コンボリュージョン)Int[0,t]{f(t-τ)・g(τ)dτ}になるという定理を使って1/{s^2+ω^2}^2の表関数を求めます。今の場合、F(s)=G(s)=1/{s^2+ω^2}とします。[sinωt/ω どうしの合成積を求める] 1/{s^2+ω^2}^2 → 1/(2ω^2)・{sinωt/ω -t・cosωt}のラプラス変換 となるので、 {t・cosωt}のラプラス変換は、 -2ω^2/{s^2+ω^2}^2 + 1/(s^2+ω^2)= (s^2-ω^2)/(s^2+ω^2)^2 と求まります。 こちらは、収束に悩むことは無い代わりに、合成積の計算を間違う危険性があります。 どちらにしても、簡単には計算できませんが、公式表があって、結果を知っていれば、良い演習問題かも知れません。

kmasacity
質問者

お礼

丁寧な回答ありがとうございます。 (1)について 微分を定義まで戻してやることで理解できるところまで式を変形できるのですね。 この回答を見る前に参考書で似たようなのを見つけてしまい、お手数かけてしまい申し訳ありません。 ちなみにその参考書では 微分の定義どおりの形にした後に e^(-st)/ds と持っていけて、-tが出てくるとなっていました。 (2)について なるほど。という感じです。かなり高度な計算ですね。 合成積の計算が合わずに上記のような形になりませんでした(計算ミスなのか、0になってしまいました。部分積分を2回して整理するやり方ですよね?計算しなおしてみます) その後を上記のようになったと仮定して計算してみたら、答えどおりになっていました。 分からなかったところがわかり、助かりました。ありがとうございました。

その他の回答 (3)

  • info22
  • ベストアンサー率55% (2225/4034)
回答No.3

>t×f(t) >のラプラス変換が >F'(s) > >になるのはなぜなのか分かりませんでした。 あなたが分からないだけです。 ラプラス変換の定義式をじっくり眺めてみてsで微分することがどんなことかを時間をかけて良く考えれば、分かることです。これだけが理解する唯一ので良く定義式を眺め、慣れることが理解の助けになるかと思います。 (t^2)sin(t),(t^3)u(t),(t^4)e^(2t)なども微分をn回行ってL{f(t)}を求めてみてください。慣れ理解が進み便利さが分かります。 下記のURLのラプラス変換公式の最後から2番目に乗っています。電気回路や過渡現象を扱っている専門書や教科書ならどんな本でも載っていてすぐ導ける公式です。公式はsでn回微分して出てくる公式に一般化されています。 L{f(t)t^n}={(-1)^n}F^(n)(s) F^(n)(s)={(d/ds)^n}F(s)…F(s)のn階微分(n回微分)です。 参考URL(先頭にhを補ってください) ttp://ja.wikipedia.org/wiki/%E3%83%A9%E3%83%97%E3%83%A9%E3%82%B9%E5%A4%89%E6%8F%9B #すべての公式は一度は自分で導いてみるとラプラス変換になれてきます。HP上にはすべての公式を導いている所は先ずないと思いますのでLaplace変換の専門書か演習書を似られた方が良いですね。

kmasacity
質問者

お礼

はい、何度もすみませんでした。ありがとうございました。 参考書に以下のような公式の導き方がありました。 dF(s)/dsを微分の定義まで戻してやる ↓ 整理するとe^(-st)のみをsで微分できる ↓ それが-t×e^(-st)となる。 ↓ 変形して公式どおりの値になる。 まだラプラス変換自体をそんなにこなしてなかったので、初歩の質問になってしまいお手数おかけしました。ありがとうございました。

  • info22
  • ベストアンサー率55% (2225/4034)
回答No.2

sin(wt)とcos(wt)のラプラス変換は覚えておくべき公式です。 忘れかかってもすぐ導けるようにしておいた方が良いです。 cos(wt)=(1/2){e^(jwt)+e^(-jwt)}を利用して L{cos(wt)}=∫[0->∞] cos(wt)e^(-st)dt =∫[0->∞] (1/2){e^(jwt)+e^(-jwt)}e^(-st)dt =(1/2)∫[0->∞] e^{-(s-jw)t}dt+ (1/2)∫[0->∞]e^{-(s+jw)t}dt =(1/2)[-e^{-(s-jw)t}/(s-jw)][0->∞] +(1/2)[-e^{-(s+jw)t}/(s+jw)][0->∞] =(1/2)/(s-jw)+(1/2)/(s+jw)= =s/{(s^2)+(w^2)} L{sin(wt)}=w/{(s^2)+(w^2)} も覚えておくべき公式です。 sin(wt)={1/(2j)} {e^(jwt)-e^(-jwt)} を利用すれば 容易に公式が導けます。 ラプラス変換表の基本的なものは覚え、またはすぐ導けるようにしておきたいです。 ここに導いた公式はラプラス変換や電気回路の演習書などの例題として載っていることが多いです。しかしそういった本が手元に常にあるわけではないですから、導く方法とともにすぐ導けるようにしておいた方が良いですよ。

kmasacity
質問者

お礼

ありがとうございます。 それで何度も申し訳ないのですが、 t×f(t) のラプラス変換が F'(s) になるのはなぜなのか分かりませんでした。 もしよろしければ、なにか調べるサイトでも良いので教えていただけないでしょうか?

  • info22
  • ベストアンサー率55% (2225/4034)
回答No.1

cos(wt)のラプラス変換の式をsで微分して下さい。 F(s)=L{cos(wt)}=∫[0->∞] cos(wt)e^(-st)dt=s/{(s^2)+(w^2)} F'(s)=∫[0->∞] (-t)cos(wt)e^(-st)dt L{cos(wt)}=-F'(s)=-d[s/{(s^2)+(w^2)}]/ds この微分はできますね。 L{cos(wt)}={(s^2)-(w^2)}/{(s^2)+(w^2)}^2 と出てくればOKです。

kmasacity
質問者

お礼

早速の回答ありがとうございます。 それで、2行目の式が変換表には載っているのですが、証明などはあるのでしょうか? もし変換表の証明のサイトなどがあれば、お教えいただけないでしょうか?

関連するQ&A