- ベストアンサー
情報数学の証明
試験勉強として、近代科学社から出版されている教科書の 章末演習問題をやっているのですが、 証明問題は略解も省略されていて、解答できない問題があります。 その1 ある集合S上の同値関係Rによって生成される同値類[a]と同値類[b]において、 いかが成り立つことを示せ。 ・aが[b]の要素でないa(aは[a]の要素)が存在することと、 [a]かつ[b]=(空集合)が成り立つことは同値である。 その2 Qを有理数全体とし、K={a+b√2 | a,bはQの要素}において、 和+ 積 X を定義すると、(K;+,X)は、 実数体(R;+,X)の部分体であることを証明せよ。 という2問の証明ついて誰か教えてください。 他の演習問題も同じようなやり方で解けるものがあると思うもですが、 証明の仕方の例すらないので、まったくどうアプローチしていいかわかりません。
- みんなの回答 (4)
- 専門家の回答
質問者が選んだベストアンサー
その他の回答 (3)
- stomachman
- ベストアンサー率57% (1014/1775)
回答No.4
- stomachman
- ベストアンサー率57% (1014/1775)
回答No.3
- stomachman
- ベストアンサー率57% (1014/1775)
回答No.2
お礼
わかりやすい解説ありがとうございました。 教科書よりわかりやすかったです^^