- 締切済み
ふりこ
中学受験理科でふりこの分野があるのですが、 糸の長さが4倍なら、一往復の時間は2倍になる これは、生徒から聞かれたら 重力の影響だからと答えますが 自分は4倍→2倍が、なぜそうなるのか良く分かりません。 高校レベルでの回答をよろしくお願いします。
- みんなの回答 (5)
- 専門家の回答
みんなの回答
- ht1914
- ベストアンサー率44% (290/658)
#4です。 ちょっと気になったことがあって計算に時間がかかりました。 振り子の等時性(振幅が小さいとき)とのからみの質問が出るかもしれませんね。(等時性は説明が難しいです) 「糸の長さが同じで角度を4倍にする。上の考えだと時間が2倍になるのではないか?」という疑問です。角度を4倍にすると円周に沿っての距離が4倍になります。 この場合は角度が4倍になるとスタート時の加速度が4倍になっています。スタート時の角度の半分の所でも加速度は4倍です。速さも4倍になっています。スタート時の角度に対する割合が同じであればどの場所でも速さは4倍です。平均の速さも4倍です。距離が4倍になって平均の速さも4倍になりますので時間は変わらないということになります。 この食い違いがどこから出てくるかを考えました。 角度が4倍になると円周に沿っての距離も4倍になります。でも高さは4倍ではありません。角度が小さいという条件の時は16倍になります。5°と20°で計算すると15.9倍になります。
- ht1914
- ベストアンサー率44% (290/658)
中学受験ということは対象は小学生ですね。 考え方は#1の方と同じなのですが式をあまり用いない考え方の方が良いかもしれないと思いました。 式の代わりにエネルギーが保存するという考えを用いています。 (1)物体を落下させると位置エネルギーが運動エネルギーに変わります。 (2)高さの変化が同じであれば落下の道筋によらず落下後の運動エネルギーは同じになりますので物体の速さは同じになります。(これは自由落下、斜面、振り子のどの場合にも成り立ちます。) (3)高さが2倍になると位置エネルギーは2倍になります。 (4)速さが2倍になると運動エネルギーは4倍になります。 以上を踏まえて糸の長さを4倍にした場合を考えます。同じ角度の所から落下させたとします。 (イ)落下の高さの差、円周に沿っての距離は共に4倍になります。 (ロ)落下後の速さは2倍になります。 距離が4倍になっているのに速さは2倍にしかなっていません。時間は2倍かかることになります。 こんなのでどうでしょう。 上の考えでは速さは一番下でのものです。「途中の速さは?」という質問が出るかもしれません。その場合は平均の速さも2倍になっていると考えればいいでしょう。同じ角度からスタートすればスタートの時の加速度は同じです。角度が半分になったときの加速度も同じです。同じ角度の所ではどこでも速さは2倍になっています。
- Linandtete
- ベストアンサー率48% (14/29)
長さLの振り子 最大振れ時の位置のエネルギーをmghとし、運動エネルギーをmv^2/2とします。振り子が最下位置を通過する時、位置のエネルギーは全て運動エネルギーとなりますから、mv^2/2=mgh より v^2=2gh が成立します。このときの v は「最大速度」です。 長さ 4Lの振り子で、同じ振れ角振動を考えますと、h は4倍になりますから v は(ルートを取って)2倍になります。また往復すべき道のりは4倍です。 4倍の道のりを2倍の速度で運動しますから周期は2倍になります。 この説明では「最大速度」だけを比較している点に弱点があります。#2 さんのように微小区間を全ての位置で考えて、厳密に検討すれば、速度は常に2倍となります。
- himara-hus
- ベストアンサー率41% (385/927)
定性的な(イメージ的な)説明であれば、以下のようでどうでしょうか。 長さの違う振り子を同じ角度に持ち上げて離した場合、わずかΔθだけ動くとき、加速度αは両者同じ、動く距離は振り子が長い方が4倍、それぞれの移動にかかる時間をt1(短いほう)、t2(長いほう)とすると (α/2)t2^2=((α/2)t1^2)X4 t2^2=(t1^2)X4 t2=t1X2 で、2倍の時間がかかる。
- ashiato-li
- ベストアンサー率66% (2/3)
等加速運動の公式 v=v0+at ・・・1 x=v0t+1/2at^2 ・・・2 v^2-v0^2=2ax ・・・3 振り子の糸の長さをlと4lとする。 鉛直の状態から振り子を角度Θだけ持ち上げたとすると、 鉛直の状態から振り子は l-lcosΘ 4l-4lcosΘ 位置が高くなったと考えられる。 持ち上げた位置から自由落下させ鉛直の位置までに得る速度は 公式3より v=√2gl(1-cosΘ) v=√8gl(1-cosΘ) が求められる。 これを公式1に代入し時間tを求めると t=√2l-(1-cosΘ)/√g t=2√2l-(1-cosΘ)/√g になり、糸の長さを4倍にすると時間は2倍になることが求められると思います。 途中式はかなり飛ばしています。