- 締切済み
問題の捕らえ方を教えて下さい。(線形代数)
【問題】 平面上にOを中心とする半径aの円Cがある。 さらに、この平面上にあるOとは異なる点Aを通り、直線OAと垂直な空間直線Lがあり、平面とのなす角は45°である。 OA間の距離をbとして、このとき円Cと直線Lとの間の最短距離をaとbをもちいて表わせ。 ・・というものなのですが、 図に書いてみたカンジではこの最短距離って、結局はOAと円の交点をDとしたら、DAのことではないのでしょうか?? でも、そんな簡単なモノではない気がして・・・(^^;) この問題のきちんとした捕らえ方をおしえてください!!
- みんなの回答 (4)
- 専門家の回答
みんなの回答
- stomachman
- ベストアンサー率57% (1014/1775)
回答No.4