ベストアンサー 数列の極限 2006/11/09 19:07 数列{(n/n+1)2n} の極限はいくつになるのでしょうか? 解答をなくしてしまったようで・・・。 わかる方がいれば教えてください。(ちなみに、2nは2n乗のことです。) みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー Tacosan ベストアンサー率23% (3656/15482) 2006/11/09 19:10 回答No.1 逆数とって e の定義を思い出してみたら? 質問者 お礼 2006/11/09 22:49 ありがとうございます。 ちなみに、答えは、1/e2 でいいのでしょうか? 通報する ありがとう 0 広告を見て他の回答を表示する(1) その他の回答 (1) Tacosan ベストアンサー率23% (3656/15482) 2006/11/10 18:40 回答No.2 厳密にいうと「極限の逆数」と「逆数の極限」は一致するのかという問題はありますが, 少なくともこの場合にはそのような答になります. ちなみにべき乗は ^ で表すのが普通. 質問者 お礼 2006/11/11 00:13 回答・アドバイス本当にありがとうございました。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 数列の極限について 数列の極限が理解できませんので、 以下の問題の解答、解説をお願いいたします。 数列の極限を調べ、収束する場合は極限値ももとめたいです。 (1)n^2/(5n+1) (2)√(n+1)-√n また以下の極限値の求め方がわかりません。 (1)(2x^2 +3)/(4x-1) (2)x/√(x^2 +4)-2 よろしくお願いします。 [高校数学III]数列の極限値 an=(-1)^n/n の極限値を求めよ。 という問題ですが、自分は (-1)^n/n=(-1)^n*1/n lim[n->∞]1/n=0より lim[n->∞]an=0 と解答したのですが、この解答で問題ないでしょうか? 数列が積の形に分割でき、その片方の極限が0に収束すれば、数列全体の極限も0に収束すると言えるのかどうか、いまいち分からず困っています。 ちなみに模範解答は -1≦(-1)^n≦1 をnで割って挟みうちの原理を使っています。 数列・極限の問題です 5^n/n!で、n→∞のときの極限を求めよ。 という問題で、解答には、この数列を書き出すと、 5/1・5/2・5/3・5/4・5/5・5/6・5/7・5/8…5/n(1) となり、 n≧5のとき、5/n≦1となることから、 (1)の数列の5/5以降を5/5(=1)で置き換えてしまって、 5/1・5/2・5/3・5/4・1・1・1…5/n= 5^5/24n としてから、ここで極限をとって、 n→∞のとき、5^n/n!→0 となっています。 ここで、質問ですが、 5/5以降をすべて5/5(=1)と置き換えてしまうような 奇抜な技を自分ならテスト中に絶対思いつかないと思うんです。 この問題は、暗記しておくと、テスト中に類題がでてきたとき気づいてくるものなのですか? それとも、思いつくための法則みたいなものはあるんですか? 頭のいい人は、どうやって、この解答法に気づいてくるんですか? よく先輩に聞くと「慣れだよ、慣れ」といってごまかされてしまってよくわかりません。 お願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 数列の極限 (1)an=(1-1/n)^n (2)an=(n+3/n+1)^n (3)an=(1-n/3-n)^-n の数列の極限がそれぞれ (1)e^-1 (2)e^2 (3)e^-2 となるのですが、なぜこうなるのか理解できません。 解る方は是非教えてください。よろしくお願いします。 数列の極限値 数列の極限値を求める問題で分からないものがあります。 1)an=1/(1・2)+1/(2・3)+・・・・・・+1/n・(n+1) 2)an=n^2/(1+2+・・・・・・+n) 極限をとる前の式の変形の仕方がわかりません。 詳しく教えていただけると助かります。 数列の極限 数列の極限 はじめまして。 数IIIの極限の問題なのですが、高校で数Iしかしていない私には解き方が分からずとても困っています。 わずかな基礎問題を解くのがやっとの状態です。 どれかひとつでも構いません、どうか解き方を教えてください!! (1)lim(2+1/n)^n n→∞ ∞ (2)?{1/(3n-1)(3n+1)} n=1 ∞ (3)?{(-5)/3^(n-2)} n=1 (4)lim√(x^2-x+2)+x x→-∞ ∞ (5)?tan^n2θ (-π/2<θ<π/2) n=1 数列の極限と関数の極限の違い 質問 問題集(Focus GoldIIIC 啓林館)に lim[n→∞]n^2-n+2/2n^2+3は、数列の極限というタイトルで分類されていますが、 lim[x→∞]6x^2-7x-5/x^2+1は、関数の極限というタイトルで分類されています。 数列の極限と、関数の極限との違いは何ですか? 下記の私見の結論に至ったのですが、この考えで合っていますか。高校生向けの説明をお願い致します。 私見 数列の極限は関数の極限の1つである。関数の極限においては、変数に全ての実数をとりうるが、数列の極限は変数が自然数という特殊な場合であり、変数には自然数しかとれない。 それ故、lim[n→2]n^2-n+2/2n^2+3のように、nが定数に近づくときの極限値を求めよ、という問題はありえない。 数列の極限について 以下のような問題で、悩んでおります。 どうか、ご教授お願いいたします。 ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー 各自然数 n に対して、 a_n = (n ! / n^n) とおく。 このとき、次の各問に答えよ。 (1)0 < a_n ≦ 1/n (n=1,2,3,・・・)を示せ (2)数列{a_n}の極限値を求めよ ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー (1)は、n=1,2,3と順に計算してみて、明らかなことがわかったのですが、どのように記述すべきかで悩んでおります。 (2)は、lima_n の値は0と思うのですが、数列{a_n}となると、どのように計算をすればよいのか悩んでいます。 どうぞよろしくお願いします。 数列の極限について a_n=(n^k)/(r^n) (k≧0,r>1) という数列の極限が0なのはなんとなくわかるのですが(指数関数の方が発散が早いから)ε-Nで説明するとどうなるのでしょうか? コーシーの判定法って感じでもないので直接何かで押さえられると思うのですがうまくできません。教えていただけませんでしょうか? 数列・関数の極限について 俗に言う「はさみうちの原理」とその周辺に関して質問があります。 数学IIIの教科書によると, すべての自然数nに対し a_n ≦ b_n ≦ c_nのとき lim{n→∞}a_n = lim{n→∞}c_n = α(定数) ⇒ lim_{n→∞}b_n = α lim{x→∞}f(x) = lim{x→∞}h(x) = α(定数)とする。 十分大きいxに対し,f(x) ≦ g(x) ≦ h(x) ⇒ lim_{x→∞}g(x) = α となっております。 (1)limを登場させる順番がなぜ違うのか? 数列の極限の方ではまず不等式を記し,関数の極限の方ではlimから記しています。 (2)「すべての」と「十分大きい」の部分は数列の極限と関数の極限で異なるか? 数列の極限の方でも「十分大きい自然数nに対し」でもよいような気がするのですが…。 以上、よろしくお願いします。 数列の極限値 数列の極限値の計算に対するしつもんです 回答よろしくおねがいします [ ]は絶対値の意味です 「lim n →∞ nの二乗-n/nの二乗+1=1を示せ」 ε>0を与えたとき [nの二乗-n/nの二乗+1 -1]=[-n-1/nの二乗+1]= n+1/nの二乗+1 ここでn+1/nの二乗+1<n+n/nの二乗=2/nであるから、とつづくのですが このn+n/nの二乗=2/nはなぜでてくるのか教えてください。 よろしくおねがいします。 数列の極限 次の問題の途中式を教えてください。問題と答えのみ載っているのでどうしてそうなるのか分かりません…。 次の数列{an}の極限を求めよ。 (1)an={1-(1/n)}^n (2)an=√(n+1) -√n *anのnは右下についているやつです。 よろしくお願いいたしますm(__)m 数列の極限を求める問題です。 数列の極限を求める問題です。 あまりに分からないのでどなたか助けていただけないでしょうか? ------------------------------------------------------------------------- 問 f(x) = log(1+x) (x > 0)とする。 (1)t≧1/3のとき、1/(t+1) < f(1/t) < 1/(t+ (1/3)) が成り立つことを示せ (2) cはc≧1/3を満たす定数とするとき、数列 {a[n]}[n=1~∞] を a[1] = f(1/c) , a[n] = f(a[n-1]) (n≧2) により定める極限値 lim[n→∞] {(log a[n])/log n} を求めよ ------------------------------------------------------------------------- (1)は解けたのですが(2)が分かりません。 ですので (1) が解けたとして (2) を求めていただけたらと思います。 よろしくお願い致します。 数学III 数列の極限 次の式で定義される数列{A(n)}の一般校とその極限を求めよ。 (1) A(1)=1, A(2)=1 , A(n+2)=A(n+1)+A(n) (フィボナッチ数列) ↑書き方が悪いのですが、A( )のカッコ内は、項数(?)として読み取ってください。 (2)A(1)=10 , A(n+1)=2√(A(n)) (2)は、まったく数列の一般項にたどり着きません。 ルートだらけ!! どうすればよいのでしょうか。 なお、数列の一般項が求めることができたら、そのあとは、自力で極限は出せるので、数列の一般項の出し方だけでいいので教えてください。 次の数列の極限を求めなさい。 次の数列の極限を求めなさい。 lim[n→∞](1+3/n)^n 答えはe^3なのですが、途中式がわかりません。 教えていただけませんか。 数3 数列の極限 数列の極限を解いてみたのですが、 (1)の途中式は合ってますか? (1)lim n→∞ n/(n+1) lim n→∞ n/(n+1) ←分母と分子にn/1をかけ、 =1/(1+1/n) =1/(1+0) =1 あと、(2)はなぜこうなるのでしょうか? (2)lim n→∞ 3/n-√(n^2-n) を求めよ lim n→∞ 3/{n-√(n^2-n)} ←を有理化?し、 =lim n→∞ 3{n+√(n^2-n)}/n ↑で分母と分子にn/1をかけると思うのですが、 分子は3と{n+√(n^2-n)}の部分、 どちらにもかけるのではなく、 {n+√(n^2-n)}だけにかけるのはなぜですか? 教えていただけると有難いです。 よろしくお願いします。 数列 極限 問題 次の問題が解けなくて困っています(T0T)汗 lim(n→∞)[ (1/n){ (n+1)(n+2)(n+3)・・・(2n) }^(1/n) ] この問題もそうですが、nが増えるたびに掛け算される数が増えるような数列の極限の解き方がわかりません。 どなたか解ける人がいればぜひ解法を教えてください! 数列の極限の問題 数列の極限の問題の解説の意味が解りません。 数列a(n)=3^n/n! のとき 0<a(n+1)≦3/4a(n) (n≧3) を示し、 lim(n→∞)3^n/n!=0 を証明せよ という問題なのですが、 解答には a(n)=3^n/n! とおくと a(n+1)=(3/n+1)*a(n) である。 そして、 n≧3 なら 0<3/n+1≦3/4 であり、a(n)>0でもあるから 0<a(n+1)≦(3/4)*a(n) (n≧3) が成立する。 したがって、n≧3のとき、 0<a(n)≦(3/4)^n-3 a(3)=9/2(3/4)^n-3 lim(n→∞)(3/4)^n-3=0 であるから、はさみうちの原理により lim(n→∞)a(n)=lim(n→∞)3^n/n!=0 と書いてあります。 ほとんどの部分は理解できるのですが、 下から3行目の、 0<a(n)≦(3/4)^n-3 a(3)=9/2(3/4)^n-3 の式の中にある、[^n-3]の意味が理解できません。 なぜ^n-3が必要なのか、どこからそれが導き出されたのか、 教えていただけると助かります。 よろしくお願いします。 数列の極限について 数列の極限について…根本が分からず下記の二問に手付かずの状態です…。。。 解法など教えていただけたら幸いです。 (1) lim (n+1)^2+(n+2)^2…+(2n)^2/1^2+2^2…n^2 n→∞ (2) lim {√(n^2+2n+2)-√(n^2-2)} n→∞ 問題のみの提示で申し訳御座いません。 Σの公式で計算するのですが共に答えが無限になったり計算できなくなったりと…;; 答えは(1)が7 (2)が3/2だそうです…。 よろしくお願いいたします。 複素数列の極限 (1)(1+i)^n/n (2)n{(1-i)/2}^n で表される数列の極限を求めたいのですが、計算の仕方が分かりません。 (1)は発散、(2)は0に収束するのではないかなと思うのですが、少し怪しいです。 計算の仕方を説明をしていただけるとありがたいです。 よろしくお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 今も頑なにEメールだけを使ってる人の理由 日本が世界に誇れるものは富士山だけ? 自分がゴミすぎる時の対処法 妻の浮気に対して アプローチしすぎ? 大事な物を忘れてしまう 円満に退職したい。強行突破しかないでしょうか? タイヤ交換 猛威を振るうインフルエンザ カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございます。 ちなみに、答えは、1/e2 でいいのでしょうか?