- ベストアンサー
数3 数列の極限
数列の極限を解いてみたのですが、 (1)の途中式は合ってますか? (1)lim n→∞ n/(n+1) lim n→∞ n/(n+1) ←分母と分子にn/1をかけ、 =1/(1+1/n) =1/(1+0) =1 あと、(2)はなぜこうなるのでしょうか? (2)lim n→∞ 3/n-√(n^2-n) を求めよ lim n→∞ 3/{n-√(n^2-n)} ←を有理化?し、 =lim n→∞ 3{n+√(n^2-n)}/n ↑で分母と分子にn/1をかけると思うのですが、 分子は3と{n+√(n^2-n)}の部分、 どちらにもかけるのではなく、 {n+√(n^2-n)}だけにかけるのはなぜですか? 教えていただけると有難いです。 よろしくお願いします。
- みんなの回答 (2)
- 専門家の回答
お礼
お礼遅くなりました。 おかげさまで理解することが出来ました。 回答ありがとうございます。