• ベストアンサー

3次元空間の回転行列

3次元空間上の点A(X,Y,Z)と点B(X',Y',Z')があるとします。ただし、点Bは、点Aを原点Oを中心とする3次元空間の回転をさせることによって得られる点とします。 このAをBへと回転させる行列を、特に以下のように考えて得られる回転行列として導出する方法を教えてください。 O,A,Bによって作られる平面に直交し、原点を通る軸を回転軸として、それを軸にAを∠AOB回転させる。 一応自分なりに考えたこの回転行列を求める方法としては、まず ベクトルOA、OBに対してシュミットの直交化を用いて新たな正規直交基底、Vx、Vy、Vzを求めます。ただし、はじめのVxの導出にはOAを用い、VzはVxとVyの外積を計算しました。 次にP=(Vx,Vy,Vz)として座標変換の行列Pを作ります。 そして、求める行列Wを W = PMz(P^-1) (Mzはz軸まわりに∠AOB回転させる行列、P^-1はPの逆行列) として導出しました。 このようにして解く方法を考えたのですが、これは正しいのでしょうか? また、これ以外にもっとスマートに解く方法があれば教えてください。 よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.2

「四元数」なんて, 調べてみます?

その他の回答 (1)

  • rabbit_cat
  • ベストアンサー率40% (829/2062)
回答No.1

その方法でもいいと思いますが. もっと単純に 1. 点Aをx軸を中心に回転して,z座標がZ'になるようにする. 2. 1で求めた点をさらに,z軸を中心に回転して,x座標とy座標をX',Y'にする. とかでもいいです.

関連するQ&A