- 締切済み
売上げの減少の式
販売促進をまったくしないと、ある商品の売れ行きは減少する傾向にあり、 売上げの定常的減少の仕方は近似的に直線である。すなわち logS=-λt+μ (Sは販売速度、tは時間、λ、μは定数) がなりたつ。 らしいのですが、右辺はともかく 左辺になぜlogが出るのか分かりません。。 よろしくお願いします。
- みんなの回答 (3)
- 専門家の回答
みんなの回答
noname#47050
回答No.3
実際の商品の販売速度をグラフにプロットすると、時間と共に減少して行きます。しかしその減少の曲線を見ていても2次関数なのやら3次関数なのやら今ひとつ分かりません。しかし販売速度を対数でプロットすると、グラフは直線になるのです。それを式で表現すると御質問の式となります。理論的に導いた式ではなく、販売速度のデータを片対数でグラフにプロットすると直線で近似出来ることから出来た式です。
- rabbit_cat
- ベストアンサー率40% (829/2062)
回答No.2
logS=-λt+μ の両辺を微分すれば dS/dt = -λ*S あるいは、 ΔS/S = -λΔt になります。つまり、減少分の全体に対する割合が、時間に比例するってことです。
- incd
- ベストアンサー率44% (41/92)
回答No.1
お久しぶりです。以前に回答した者です。質問は自分の紹介した本(『微分方程式で数式モデルを作ろう』, p77)の記述であると理解しました。以下、それを前提として、 まずp76のグラフはそもそも半対数目盛りで描かれている、と書かれていますね。半対数というのは軸の片方をlogのとることを言います。このグラフの場合には縦軸にlogをとっています(目盛りが一定間隔でないことが分かりますか?) ですから、このグラフから読み取れることは、売り上げ(のlogをとったもの)は、時間の1次関数になっている、ということなのです。この仮説を式で表現したのがその式です。