- ベストアンサー
アルキメデスのHat-Box定理の逆は成り立つのでしょうか?
球S={(x,y,z)|x^2+y^2+z^2=1} と 円柱T={(x,y,z)|x^2+y^2=1} があります。 z軸からの射影ψ:S → T ψ((x,y,z)) = (x/r, y/r, z) 但しr=√(x^2+y^2) を考えます。 球Sの表面積は、4πですが、像である円柱の側面ψ(S)の面積も、直径*π*高さ=4πとなり同じになります。 そしてこれはSの部分集合とその像に関しても、面積は同じになっていたと思います。 つまり、等積変形です。 ではその逆はどうなのでしょうか? つまり、球とは限らない一般の曲面Sと円柱T={(x,y,z)|x^2+y^2=1} があったとき、 z軸からの射影ψ:S → T ψ((x,y,z)) = (x/r, y/r, z) 但しr=√(x^2+y^2) が等積変形であれば、Sは球、もしくは円柱に限られるのでしょうか?
- みんなの回答 (2)
- 専門家の回答
質問者が選んだベストアンサー
その他の回答 (1)
- eatern27
- ベストアンサー率55% (635/1135)
回答No.1