締切済み 複素数の極形式 2023/05/05 05:50 1+cosθ+isinθ([0,2π)、θ≠π)の極形式を求める問題なんですが、なぜ解答は場合分けをしているのでしょうか? 画像を拡大する みんなの回答 (2) 専門家の回答 みんなの回答 asuncion ベストアンサー率33% (2127/6289) 2023/05/05 11:29 回答No.2 >θ≠π これはどこ行ったん? 通報する ありがとう 0 広告を見て他の回答を表示する(1) tmpname ベストアンサー率67% (195/287) 2023/05/05 08:09 回答No.1 敢えて答えを言わずに解答すると: 動径はいくつになるか、分かりますか? 通報する ありがとう 1 カテゴリ 学問・教育数学・算数 関連するQ&A 複素数の極形式変形 (1)cos120°-isin120° (2)2(sin60°+isin60°) これらを極形式に直すにはどうすればいいのでしょうか? 解答には、ただ (1)cos240°+isin240° (2)2(cos30°+isin30°) とだけでていて、どういう過程でこうなったのか全く分かりません。 複素数の極形式のマイナスがつく場合についてです。 複素数の極形式のz=r(cosθ+isinθ)、r=lzl、θ=argz にてcosθとisinθの頭にマイナスがついても(例:z=r(cosθーisinθ)やz=r(ーcosθ+isinθ))それは複素数の極形式といえるんですか? 複素数 次の複素数を極形式で表せ。ただし、0°≦θ<360° z=1-(cosθ+isinθ) z=1-(cosθ+isinθ) =1-cosθ-isinθ =2sin^2θ/2-2isinθ/2cosθ/2 =2sinθ/2(sinθ/2-icosθ/2) =2sinθ/2{cos(90°-θ/2)-isin(90°-θ/2)} =2sinθ/2{cos(θ/2-90°)-isin(θ/2-90°)} となるそうです。 極形式で表せということは z=r(cosθ+isinθ)にもっていくことは分かるのですが、そのもって行きかたが分かりませんでした。 式の1行目から2行目は普通の展開ですよね。 2行目から3行目とそれ以降は何をしているのですか? すいませんが解説をお願いします。 複素数の極形式変形(2) 今回の問題は -1/2{cos(-90-θ)+isin(-90-θ)} を変形すると 1/2{cos(90-θ)+isin(90-θ)} になるということなんですが、教科書に載ってる三角関数の公式にはcos(-90-θ)など載っていませんし、先頭係数の-もどこにいったのか全く分かりません。 三角関数の変換には何かパターンみたいなものがあるのでしょうか?教科書に載っているものを暗記しただけじゃ、こういう問題に対応しきれない気がするのですが...アドバイスお願いします。 極形式の範囲 α=1+√3i/1+iの極形式をかけ。という問いで、 α=1+√3i/1+i=√2(cos15+isin15)と解答に書いてあったけど、範囲が決まってないから√2{cos(15+360k)+isin(15+360k)} (k:整数)と書くべきじゃないのですか? 教えてください。 複素数の極形式 r(≠0),θは実数で、r(cosθ+isinθ)は代数的数とする。 このときcosθも代数的数であることを示せ。 うまく示せません。教えて下さい。 複素数平面の問題です・・・ こんばんわ。かなりの間数学を離れていたのですが、すこしさらっと復習しなければならなくて、理解できない問題にぶつかりました。 Z=COSθ+iSINθ(0°≦θ≦360°)のとき |z+1/iz|(絶対値)の最小値をもとめよ。 という問題なのですが、解答で z=COSθ+iSINθとすると、|z+1/iz|=|iz2(2乗)+1/iz|=|iz2+1| というようになっていましたが、なぜ3つ目につながるのかが分かりません。分母のizはどこへいってしまったのでしょう。 複素数 複素数平面上で、z1=√6 +√2i ,z2=1+√3iが示す点をそれぞれp1,p2とし、また原点をOとする。このとき、Lp1 O p2 の大きさは□であり、△p1 o p2 の面積は□である 極形式で表すと z=r(cosθ+isinθ) で表すと z1 = √6 +√2i = √2(√3+i) = 2√2(cos30+isin30) z2 = 1+√3i = 2(cos60+isin60) で面積の公式 S=absinθ はですが どのように求めるかわかりません。 複素数の足し算 1+cos(2/3)π+isin(2/3)π+cos(4/3)π+isin(4/3)π=0 となっていました。 1+cos2π + isin2π =2としたのですがこれだとなぜいけないのでしょうか? 複素数の問題です α=cos72°+isin72°のとき、cos72を求めよという問題です。考えたのですがわからなかったので、是非教えてください。! 複素数平面と極形式 203 z=cos(π/5)+isin(π/5)とするとき、次の問いに答えよ。 (1)(1+z)(1-z+z^2-z^3+z^4)とz+1/z-(z^2+1/z^2)の値を求めよ。 (2)w=z+1/zとおくとき、wの値を求めよ。 (3)cos(π/5)の値を求めよ。 この問題を解いてください。お願いします。 複素数平面の問題について z=-sinθ-icosθのとき、z^-4の絶対値と偏角を求めよ。 という問題で、 -sinθ-icosθ=cos(270°-θ)+isin(270°-θ) と解答でなっているのですが、どうしてこのようになるのでしょうか。 よろしくお願い致します。 複素数の問題です。 複素数αとβは, |α - 2| = 2, |β = 3i| = 1をみたす。ここで、z = α + β とおくと、点zの存在領域を福素数平面上に示せ。 上の問題ですが、以下のように解いた場合、参考書の解答と存在領域が異なったのですがどうしてこのようなことがおきるのでしょうか?ちなみに参考書はベクトルを用いています。 α = 2e^iθ + 1, β = e^iθ + 3i とおくと、 α = 2(cosθ + isinθ) + 2 = 2cosθ + 2 + 2sinθi β = cosθ + isinθ + 3i = cosθ + (sinθ + 3)i z = α + β = 2cosθ + 2 + 2sinθi + cosθ + (sinθ + 3)i = 3cosθ + 2 + (3sinθ + 3)i ここで、z = x + yi とおくと x = 3cosθ + 2 y = 3sinθ + 3 (x - 2)^2 + (y - 3)^2 = 9(cos^2θ + sin^2θ) = 9 ∴ 中心2 + 3i, 半径3の円周上 数学 極形式 問題 z=r(cosθ+isinθ)のとき、次の計算をして、極形式で表せ。 (1)z+- z =r(cosθ+isinθ)+r{cos(ーθ)+isin(ーθ)} までは分かるのですが、答えが2rcosθになるのですが これはどういう風に計算した結果なんでしょうか? 複素数について。 z=3(cosα+isinα),y=a+cosβ+isinβとおく。z,yが一致するための正の実数aの範囲を求めよ。 という問いで、解答において 『zは中心は原点で,半径3の円、yは中心(a,0),半径1の円』 と書いてあります。ここで、 『zは中心は原点で,半径3の円』はわかるのですが、 『yは中心(a,0),半径1の円』がわかりません。 どうぞ、教えてください。 複素数のn乗根が解けません 例に、Z^4=1 という問題を解くとします。 ド・モアブルの定理より r^4(cos4θ + isin4θ) となるところまでは分かります! しかし r^4(cos4θ + isin4θ) = 1(cos0 + isin0) は理解出来ませんでした。 この後もいきなり訳の分からない数(2kπ)が出てきて、私にはちんぷんかんぷんです。 ご教示お願いします。 複素数と図形 複素数平面上に三点A(z),B(z^2)C(z^3)を取り、z=r(cosθ+isinθ)(r>0)とする。 三角形ABCがAB=ACの二等辺三角形となるとき、z全体の表す図形を求めよ。 この問題の解き方を教えてください。 計算過程もお願いします。 ※絶対値を使って、z=r(cosθ+isinθ)を使わずに解くのが簡単ですが、あえて、z=r(cosθ+isinθ)を使って解いてください。お願いします。 複素数の証明について z1=r1(cosθ1+isinθ1)、z2=r2(cosθ2+isinθ2)のとき、 z1/z2=r1/r2*[cos(θ1-θ2)+isin(θ1-θ2)] を証明したいのですが、どうやって証明したらよいでしょうか? 加法定理はわかるので、加法定理を使う前のところまで教えて頂けたら嬉しいです。 ////////////////////////////////////////////////// 3点A(α)、B(β)、C(γ)とするとき、 (γ-α)/(β-α)=k(cosθ+isinθ)が成り立つ時、 θ=arg(γ-α/β-α)が成り立つのはどうやって証明したらよいでしょうか? どちらかだけでもよいので、よろしくお願いします。 複素数の計算 問題を解く過程で、以下の式の変形が必要とされます。 2|z-(3+3i)|=|z| …(1) iは虚数単位 解答によると、 z=r(cosθ+isinθ)とおくと、 (与式)⇔ r^2-8(sinθ+cosθ)r+24=0 …(2) と整理出来るらしいのです。 しかし、自力で何度計算しても、うまく出来ません。 恐らく、何らかの勘違いをしていると思われます。 (1)から(2)の計算過程がわかる方、お手数をおかけしますが、お教えいただけないでしょうか。 次の問題がわかわないので教えてください。 次の問題がわかわないので教えてください。 複素数ZとZ(√3+i)の関係を示しなさい。という問題なのですが、 計算すると、Z(cos30+isin30)みたいな感じになり、Zに対して正方向に30度回転させて グラフになるみたいなのですが、どうしてこうなるか分かりません。 なんとなく極形式を使った問題なんだろうなということはわかります。 ですが極形式であるr(cosθ+isinθ)に当てはめてみると、 まずrを求めるとピタゴラスの定理より、 r^2=√3^2+i^2でr=√2となりました。 今度は、cosθ=(√2/√3) isinθ=(√2/i)となり、 答えと合わないのですが、どのように考えれいいのでしょうか? このような答えになるまでの解答を教えてください。 お願いします。 注目のQ&A 「前置詞」が入った曲といえば? 緊急性のない救急車の利用は罪になるの? 助手席で寝ると怒る運転手 世界がEV車に全部切り替えてしまうなら ハズキルーペのCMって…。 全て黒の5色ペンが、欲しいです 長距離だったりしても 老人ホームが自分の住所になるのか? 彼氏と付き合って2日目で別れを告げられショックです 店長のチクチク言葉の対処法 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど