ベストアンサー 効用最大化問題です 2022/06/26 13:02 答えは2番です。 これをラグランジュではなく、グラフを使ったやり方で解きたいです。 途中までしてみました。 C2=(1+r)(Y1-C1)+Y2 =1.05(180-C1)+210 =399-1.05C1 これをu= に代入 u=[c1(399-1.05c1)]^1/2 =(399c1-1.05c1^2)^1/2 これを微分して、u'=0 にすると思うのですが、 (399-2.1c1)^1/2=0 でいいのですか? これが合っていたとして、ここからどう計算すればいいか分かりません。 画像を拡大する みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー statecollege ベストアンサー率70% (496/704) 2022/06/26 14:20 回答No.1 まず、問題をきちんと定式化してごらん。 max u = c1^(1/2)・c2^(1/2) s.t. c1 + c2/(1+r) = 180 + 210/(1+r) すると、これをr=0.05とおいて解く。方法としてはラグランジュ法と代入法(予算制約よりc2をc1の式として表し、それを効用関数のc2に代入し、uをc1のみの式とする方法)とがある。あなたは2番目の方法で解きたいんですね。後者をグラフを使ったやり方と呼んでいるようですが、グラフを使ったやり方なら、もっと直観的に、効用最大化は無差別曲線と予算制約線が互いに接するところで多与えられる、という事実を使えばよい(速く求まる)。 無差別曲線の傾き=∂u/∂c1/∂u/∂c2=c2/c1 となることはいいですか? 予算線の傾き=1.05 よって、 2つの曲線の接点においては両者が等しくなるので、 c2/c1 = 1.05 c2=1.05c1 これを予算制約に代入して c1 = 190 c2= 199,5 を得る。このc1とc2の組が効用最大化の消費の組だ。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 1 カテゴリ 学問・教育人文・社会科学経済学・経営学 関連するQ&A 効用最大化問題 ラグランジュ関数を利用した効用最大化解を求める問題です。 消費者はプライステイカー 効用関数 u(x,y)=x^(2/3)+5y^(2/3) 消費者の所得 I>0 価格をそれぞれ px>0 py>0 予算制約のバインド確認済み s,t, I-px-py=0 効用関数が凹関数であること確認済み であるときの効用最大化する財x,yを求める。 このときの数式の処理がわかりません。 1階条件を求め、 (2/3)x^(-1/3)-λpx=0 5(2/3)y^-(1/3)λpy=0 I-(px)x-(py)y=0 ここまでは導けたのですが、この先の処理で答えが複雑になってしまい解けないです。 ご教授ください;; 効用最大化問題で分からないところがあるので・・・ 教えてもらいたい事があります。 max u=U(X、Y)・・・(1) m=Px+Py・・・(2)があり (2)を(1)に代入すると U(X、m/Py-PxX/Py)になるのは (2)式をどのように変化させたらそうなるのでしょうか? 予算制約下での効用最大化について 社会人から大学院に進んだ者ですが、講義で、ある式についてみんなに分かりやすく説明してくれと言われて困っております。 以下、その式です。 効用 U(c0,c1) 予算制約 c0+c1/(1+r)=y0+y1/(1+r) 予算制約の式についての導出は理解できました。 しかし、この制約下で効用を最大にするときの式?がよく分かりません。c0について微分がどうの・・・と言われたのですが、微分の微の字も知らず・・・。 知識不足での質問ゆえ足りない部分など多々ございますが、ぜひ宜しくお願い致します。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 最大値 Y=cx/√{a^2+(b-x)^2}の最大値の求め方がわかりません。 a,b,cは定数です。商の微分の仕方は知っています。微分した後にグラフを書いて求めようとしましたが、私の計算間違いか、おかしい答えが出てきてしまいます。どなたか詳しい方、私に教えていただけませんでしょうか? 【ミクロ】効用最大~お力貸して下さい。 こんばんは。ミクロ経済学の効用最大化問題の解き方を手伝ってください>< ラグランジュ乗数法がよくわからないので、(2)はラグランジュ~を使わずに微分や偏微分で解く方法があれば教えてください。 ちなみに友人の解は(1)=1/2 (2)x1=10 x2=30 となりました。 解き方を書いて下さるとうれしいです。よろしくおねがいします。 --------------------------------------------- (1) 効用関数をu=x1^1/2・x2^1/2であらわせるとする。 x1=x2=4のときの第1財(x1)の限界効用は何か。 (2) 第1財(x1)の価格を30、第2財(x2)の価格を10、所得を600として、第一財と第二財の効用を最大化する消費量を求めよ。 以上です。 効用関数の最大化問題 自分は経済を勉強し始めた者ですが、すみません。この問題なんですが、聞かれ ている意味が分からないのですが どういう解法を使用するべきなんでしょうか? 予算制約条件pxX+pyY=mのもとで、効用関数U(x,y)=xy2乗の最大化問題 を考える(pxはx財の価格、pyはy財の価格、mは所得を表している) 1)ラグランジュ関数を定義し、一階の条件を全て求めなさい。 2)需要関数x=x(Px,Py,m)、y=y(Px,Py,m)を求めなさい。 微分方程式に関する問題です。 (x^2){(d^2)y/d(x^2)} - x(dy/dx) + y = x^3 (*) ********************************************************* (1)y = xφ(x)が微分方程式(*)の解であるとき、φのみたす微分方程式を求めよ。 ********************************************************* y = xφ(x)からy' , y''を計算して代入し、 φ''(x) = x/2 となりました。(答えの書き方はこれでいいのか分かりません。) ********************************************************* (2)φ'(x)を求めよ。 ********************************************************* (1)の答えの両辺を積分して φ'(x) = (x^2)/4 + C となりました。 ********************************************************* (3)微分方程式(*)の一般解を求めよ。 ********************************************************* (3)のとき方が分かりません。 どのようにして解いていけばいいのでしょうか? よろしくお願いします。 条件が与えられた時の最大値、最小値 (1)条件x^2-2xy+3y^2=6の下でのx^2+2y^2の最大値と最小値を求めよ。 (2)D:x^2-2xy+3y^2≦6におけるe^{-(x^2+2y^2)} の最大値と最小値を求めよ ラグランジュの乗数法を使うのがいいみたいですが ラグランジュで解けなかったので違う解き方をしました。 答えが無いのでこの回答で良いか答えが正解が見てもらえませんか。 (1)(x-y)^2+2y^2=6 x-y=√6cosθ ,y=√3sinθとおく。 これを満たすθが存在する。 x^2+2y^2 にx,yを代入して x^2+2y^2=3√2sin2θ+9sin^2θ+6cos^2θ 2倍角の公式を使って、 =15/2+3√2sin2θ-3/2cosθ =15/2+9/2sin(2θ-α) cosα=2√2/3 sinα=1/3 |sin(2θ-α)|≦1より 最大値12 最小値3 (2) (1)と殆ど同じやり方で x-y=√6rcosθ y=√3rsinθ DはE 0≦θ≦2π 0≦r≦1 にうつる rが加わっただけなので x^2+2y^2=r^2(15/2+9/2sin(2θ-α)) (1)よりMax12 Min3 を代入すると 1/e^12r^2 , 1/e^3r^2 を得る。 0≦r≦1 より 1/e^12<1/e^3<1 したがって、 最大値1 最小値 1/e^12 こちらで間違いはないですか? ラグランジュ関数を使った問題について X財とY財を消費するある消費者の効用関数は u=0.4lnx+0.6lny である。 X財:100円 Y財:200円で、所得:20,000円すべてをX財とY財の購入に充て、効用の極大化を図る。 という設問で、 (1)この消費者が直面する極値問題の目的関数と制約式を具体的に示せ。 →目的関数:u=0.4lnx+0.6lny 制約式:100X+200Y=20,000 (2)ラグランジュ未定乗数をλとして、この消費者が直面する極値問題を解くためのラグランジュ関数L(λ、x、y)を定義せよ →L(λ、x、y)=0.4lnx+0.6lny+λ(20,000-100x-200y) というところまで考えたのですが、 (3)(2)で定義したラグランジュ関数の1階の条件を用いて、この消費者の効用水準の極値を実現する「X財とY財の消費量の組み合わせ」の候補を求めよ。 この問題で偏微分をしてそれぞれ 20,000-100x-200y=0 1/x0.4-100λ=0 1/y0.6-200λ=0 として答えを出そうとしたのですが、まずこちらの途中式は合っているのでしょうか? 式があっていても計算ミスなのか合わない数字が出てきてしまって悩んでいるので、宜しければ正しい解の数値も上げていただけると嬉しいです。 微分 関数y=x2乗+1のグラフに点C(2,1)から引いた接線の方程式を求めよ。 この問題まず接線(t,t2乗+1)と接点をおき関数を微分して、接線の傾きを求めてその直線が(2,1)を通るので代入して計算しましたが答えが出ません。 計算ミスでしょうか?やり方は合っていますか? 大学院入試の微分方程式の問題がわかりません! 問題の式を書くとややこしいので画像を添付しました。 【初期条件: y(0)=y0,y'(0)=y1】 画像の微分方程式について (1) 変数変換 u=( x^2 + 2 )y を行って、uに関する微分方程式を導け (2) (1)で導いた微分方程式を解くことで、元の微分方程式の解yを求めよ (3) 【x→∞】lim y(x)を計算せよ また、【x→-∞】lim y(x)が存在するためのy0,y1の条件を求めよ (1)の変数変換を行うときに uを微分してu' u'' を出し それらをy y' y'' の式に直して代入すればできると思うのですが その変形がややこしすぎて何回やっても間違えてしまいます そこで知識ある皆様のお力をお貸しいただければと思い質問しました。 何卒よろしくお願い致します。 偏微分の問題です 偏微分の問題です 数学の中間試験の過去問で疑問にぶち当たりました。 u=x+y v=x-2y のとき、du/dx dx/du を求めなさいという問題なのですが、(dは全てラウンドディーです)答えではそれぞれ1と2/3となっています。1つ目の式のyを定数とみてdu/dxが1というのは分かります。また、yに二つ目の式を代入し、変形してから偏微分すると、2/3に確かになります。しかし、一つ目の式をx=u-yと変形してdx/du=1ではダメなのでしょうか。 このように、2つ式が与えられたときに、dx/duまたは、du/dxが何を定数とみなして偏微分するかによって値が異なってしまうとおもいます。上の場合では、xをuとvの式であらわしてvを定数とみなして偏微分する場合と、xをuとyの式であらわしてyを定数とみなして偏微分する場合とでは答えが変わります。 どうしたらいいのか見当もつきません。どうか皆様ご教授ください。 以下問題を添付します。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 微分方程式の問題です (1+x)y" + xy' - y = 0 (ここでy'、y"はそれぞれyのxでの一階微分、二階微分) ---------------------------------------- 方程式を満たす解の一つがy1=xであることから、もう一つの解y2を y2=u(x)*y1 と置いて与式に代入して、 u'(x)=v(x) と置くことで v(x)= (1+x) / ( x^(2) * exp(x) ) と 求めることができましたが、これの積分ができません。。。 ここまでの計算が合っている自信も無いので、どなたか解き方および解を教えてください…どうかよろしくお願いします。 y=1/(x+1)のグラフ y=1/x+1を微分してグラフを描きたいのですが、y=1/x+1の微分および2回微分が分かりません。途中計算とグラフをお願いします。 急いでいます。 資産選択期待効用最大化 微分の計算と微分する変数についてわからないので質問します。 今所得Wを持つ次郎君がこの所得を2つの不確実な資産に振り分けて持つことを考えて、ここで2つの資産はタイプAとタイプBとして、簡単化のためどちらの資産もα1の確率で収益率r1、α2の確率で収益率r2が得られるものとします。 ただしα1+α2=1、r1≠r2です。所得Wをそれぞれの資産に振り分けてもつことを考えるために、Wのβの割合をAに1-βの割合をBに振り分けるものとします。 α1^2の確率で収益は(1+r1)βW+(1+r1)(1-β)W=(1+r1)W。 α1α2の確率で収益は(1+r1)βW+(1+r2)(1-β)W。 α1α2の確率で収益は(1+r2)βW+(1+r1)(1-β)W。 α2^2の確率で収益は(1+r2)βW+(1+r2)(1-β)W=(1+r2)W。・・・(1)と場合分けして、次郎君の効用関数は、u=U(x)でU'(x)=dU/dx>0また次郎君は危険回避的と考えて凹関数、すなわちU''(x)={(d^2)U/d(x^2)}<0とします。(1)より次郎君の期待効用は、 EU=α1^2U{(1+r1)W}+α1α2U{(1+r1)βW+(1+r2)(1-β)W}+α1α2U{(1+r2)βW+(1+r1)(1-β)W}+α2^2U{(1+r2)W}・・(2) Wを2つの資産に配分する最適なβは(2)の期待効用を最大にするβですから。その1階の条件は、ここからがわからない数式です。 dEU/dβ=U'{(1+r1)βW+(1+r2)(1-β)W}[(1+r1)W-(1+r2)W]+ U'{(1+r2)βW+(1+r1)(1-β)W}[(1+r2)W-(1+r1)W]=0・・・(3)と教科書には書いてあるのですが自分は、2つのU'の前にα1α2が必要だと思います。α1α2はβの関数U(β)の係数だと思うからです。 さらに(3)を満たすβがEUを最大にするための2階の条件、{(d^2)EU/d(β^2)}を求めると、U''(x)<0とr1≠r2より U''{(1+r1)βW+(1+r2)(1-β)W}[(1+r1)W-(1+r2)W]^2+ U''{(1+r2)βW+(1+r1)(1-β)W}[(1+r2)W-(1+r1)W]^2<0と教科書に書いてあります。 U''(x)<0よりU''{(1+r1)βW+(1+r2)(1-β)W}とU''{(1+r2)βW+(1+r1)(1-β)W}が負となる。と考えましたが、微分する変数xとβと違っているのでU''(β)<0としていいか疑問がのこりました。 どなたかdEU/dβにおいてU'の前にα1α2が必要かいらないかと、U''(β)<0としていい理由をおしえてください。お願いします。 偏微分の問題に関する質問です。fはC^2級とします。関数u=f(sqr 偏微分の問題に関する質問です。fはC^2級とします。関数u=f(sqrt(x^2+y^2))とし、また r=sqrt(x^2+y^2)とおきます(r>0)。このとき、uをx,yで偏微分したときの1次、2次の偏導関数はそれぞれどのようになるでしょうか? 労働供給量の決定の問題の解説をお願いします ある消費者の効用関数がU=3・L・Y-2・L^2-Y^2 (Lは余暇、Yは所得)で示され、かつ一時間当たりの賃金が2であるとき、この消費者が効用最大化を図ったときの一日の労働時間は何時間か。 ただし、この消費者は1日を余暇と労働以外に充てないこととする。 ヒントで偏微分を使うと聞いたのですがやり方がわからず、予算制約式を作ってY=48-2LをUに代入し微分するというやり方で答えが出ると思ったのですが三次方程式が残り答えの出し方がわかりません。この問題の解法をできるだけ分かりやすく教えてください。 微分方程式の問題教えてください。 解けなくて困っています。 次の微分方程式の解を求めよ。 y' = x+2y / x という問題があります。 答えを見ると y = Cx^2 -x となっています。 自分で解いてみても、 途中で計算が分からなくなってしまいます。 計算過程を教えてくれませんか? ☆★ミクロ経済学★☆ いくら計算しても、選択肢にある答えに辿り着かないので、解説していただければと思います。 合理的な消費者の効用関数u=xy+x+yにおいて、Py=8, M=120とするとき、X財の需要曲線は? [u:効用 x, y: X財、Y財の消費量 Px, Py:X財、Y財の価格 :M:所得] Px*x+8y=120(…(1))をxについて解く →uに代入→uをyで微分=0 →yについて解く→(1)に代入→xについて解く の過程で解けますでしょうか? ミクロの問題(計算)です ミクロの生産者行動の費用最小化問題の計算が合いません。 コブダグラス生産関数を持つ生産者が長期の場合、利潤最大化問題は max(y,L,K) py-wL-rK subject to y=L`α・K`(1‐α) これをλをラグランジュ乗数として、ラグランジュ関数を解きました。 p-λ=0 -w+αλL`(α-1)・K`(1-α)=0 -r+(1-α)λL`α・K`(‐α)=0 L`α・K`(1-α)-y=0 となり、1式を2、3式に代入し、2/3式をしてLをKで表し、2式に代入したところ、Kが消えてしまいました。どのようにすればL,K,Yをきちんと求められるのでしょうか?教えてください。 初めて数式の質問をさせていただいています。見にくかったらすみません。よろしくお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 考古学・人類学文学・古典歴史経済学・経営学心理学・社会学地理学美術音楽哲学・倫理・宗教学その他(人文・社会科学) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など