対称式の性質を用いた因数分解
x,y,zに関する3次の同次の対称式で分からない点があるので質問します。
問題は、次の対称式を因数に分解せよ、
(x+y+z)^3-(y+z-x)^3-(z+x-y)^3-(x+y-z)^3 というものです。
(与式)={(x+y+z)^3-(y+z-x)^3}-{(z+x-y)^3+(x+y-z)^3}とすると2つの括弧内はともに2xなる因数をもつ。与式はx,y,zに関する3次の同次の対称式だから、それが2xなる因数をもてば、2y,2zなる因数を持ち、結局xyzなる因数をもつ。この1文が分からないところです。
自分の考えでは、2つの対称式の和差積商は対称式より、与式は因数分解しても、(1次の対称式)*(2次の対称式)か3次の対称式になる。
(与式)=2x(A+B+C・・・)となっていて、第2因数にyという共通因数があっても、括りだすとき2x+yにはならずに、2xy(A'+B'+C'・・・)となる。このように共通因数を括りだすとき、()のそとにある因数に+でつながらないので、3文字の1次の同次対称式(2x+2y+2z)を与式は因数に持たない。同様にして3文字の2次の同次対称式2x^2+2y^2+2z^2や、2xy+2xz+2yzを与式は因数に持たない。よって3文字の3次の同次対称式である、xyzを因数にもつ。自分の考えがまちがっていたら訂正してください。そしてまったくわからないのが、2xyzも3次の対称式なのに、2x2y2zが因数になっていることです。どなたかこの理由を教えてください。お願いします。因数分解の答えは24xyzです。
お礼
ありがとうございます!