- 締切済み
未知数を含む連立方程式について質問です。
未知数を含む連立方程式について質問です。 【問題】 x、yに関する二次方程式 kx-6y=k+2 •••(1) 2x+(k-7)y=3•••(2) において (1) 解が存在しないのは、kの値がいくらのときか。 (2) 解が無数にあるのは、kの値がいくらのときか。 (3)ただ1組の解を持つとき、その解を求めよ。 【質問】 次の指針について全体的にわからないのでご教示いただきたいです。 (1)×(k-7)+(2)×6をつくるとyが消去されて {k(k-7)+12}x=(k+2)(k-7)+18 ∴ (k-3)(k-4)x=(k-1)(k-4) •••(3) が得られる。逆に(3)-(1)×(k-7)を6で割れば、(2)が得られるので (1)かつ(2)⇔(1)かつ(3) ところで、(3)を満たすxの値が存在すると、それに対し、(1)でyの値をただ一つ定めることができるので、連立方程式(1)かつ(2)の解は、xの方程式(3)の解と1対1に対応する。 よって(3)を考えればいい。 特に、 1.(1)かつ(2)⇔(1)かつ(3) とは、(1)かつ(2)と(1)かつ(3)の何が同値なんでしょうか? 2.(1)×(k-7)+(2)×6をつくるとyが消去されて {k(k-7)+12}x=(k+2)(k-7)+18 ∴ (k-3)(k-4)x=(k-1)(k-4) •••(3) が得られる。逆に(3)-(1)×(k-7)を6で割れば、(2)が得られる.....とありますが、なぜこれで同値と言えるのでしょうか? 3.(3)を満たすxの値が存在すると、それに対し、(1)でyの値をただ一つ定めることができるので、連立方程式(1)かつ(2)の解は、xの方程式(3)の解と1対1に対応する.........とあるのですが、そもそもなぜ同値になるのか、つまりはなぜ必要十分条件になるのかということがわからないのだと思います。 この3つなどについて、申し訳ないのですが、丁寧にご教示いただけると嬉しいです。 よろしくお願いします:)
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- bran111
- ベストアンサー率49% (512/1037)
1.(1)かつ(2)⇔(1)かつ(3) とは、(1)かつ(2)と(1)かつ(3)の何が同値なんでしょうか? (1)かつ(2)を用いて得られる結果は(1)かつ(3)を用いて得られる結果が同じだということ、そしてこの結果から逆に(1)かつ(2)を導くこともできるし、(1)かつ(3)を導くこともできるということです。 2.(1)×(k-7)+(2)×6をつくるとyが消去されて {k(k-7)+12}x=(k+2)(k-7)+18 ∴ (k-3)(k-4)x=(k-1)(k-4) •••(3) が得られる。逆に(3)-(1)×(k-7)を6で割れば、(2)が得られる.....とありますが、なぜこれで同値と言えるのでしょうか? (1)かつ(3)から(1)かつ(2)を得られるということです。 3.(3)を満たすxの値が存在すると、それに対し、(1)でyの値をただ一つ定めることができるので、連立方程式(1)かつ(2)の解は、xの方程式(3)の解と1対1に対応する.........とあるのですが、そもそもなぜ同値になるのか、つまりはなぜ必要十分条件になるのかということがわからないのだと思います。 A⇒BのときAはBにとって必要条件、BはAにとって十分条件であることは習っていると思います。必要十分条件とはA⇔Bのように前向きにも後ろ向きにも同じ結果が得られること、相互に必要十分条件になっていることで、「同値」と同じ意味です。
お礼
回答ありがとうございました! とても参考になりました:) また機会がありましたら ご教示いただけると嬉しいです。