ベストアンサー 幾何学の図形の問題を教えて下さい。 2015/07/02 20:51 平面での、この問題が分かりません。 問題:平行四辺形に対して4辺の長さの2乗和は対角線の長さの2乗和に等しい事を示しなさい です。分かる方教えて下さい。お願いします みんなの回答 (5) 専門家の回答 質問者が選んだベストアンサー ベストアンサー staratras ベストアンサー率41% (1517/3693) 2015/07/03 12:24 回答No.3 三平方の定理だけでも示せます。 下の図のように平行四辺形ABCDの各辺の長さについて、AB=CD=a、BC=DA=b 、 対角線の長さについて、BD=x,AC=yとする。 また、頂点AとBから辺CDまたはその延長線上に垂線BH、AH’を下ろし、BH=AH'=h とする。 直角三角形BHDについて三平方の定理から (a-c)^2+h^2=x^2 …(1) 直角三角形ACH’について同様に (a+c)^2+h^2=y^2 …(2) 直角三角形BCH について同様に h^2=b^2-c^2 …(3) (1)(2)の両辺同士を加えると 2(a^2+c^2+h^2)=x^2+y^2 これに(3)を代入すると 2(a^2+b^2)=x^2+y^2 したがってAB^2+BC^2+CD^2+DA^2=AC^2+BD^2 平行四辺形に対して4辺の長さの2乗和は対角線の長さの2乗和に等しい。 画像を拡大する 質問者 お礼 2015/07/06 21:30 ありがとうございます。 分かりやすく、助かりました 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 1 その他の回答 (4) tadopikaQ ベストアンサー率73% (22/30) 2015/07/05 17:44 回答No.5 余弦定理を用いて簡単に証明できます。 平行四辺形をABCDとします。 三角形ABCに於いて、 AC^2 = AB^2+BC^2-2AB*BC*cosB ..... [1] 三角形BCDに於いて、 BD^2 = BC^2+CD^2-2BC*CD*cosC ..... [2] AB=CD, BC=DA, cosB=-cosC に留意し、[1], [2] の辺々を加えて計算すると、 AC^2+BD^2 = AB^2+BC^2+CD^2+DA^2 を導くことができます。 質問者 お礼 2015/07/06 21:32 すいません補足コメントに場所間違えました。 有難うございます 質問者 補足 2015/07/06 21:32 助かりました。有難うございます 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 1 staratras ベストアンサー率41% (1517/3693) 2015/07/03 12:27 回答No.4 No.3です。「CH=DH'=cとする。」 が抜けていました、失礼しました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 1 bran111 ベストアンサー率49% (512/1037) 2015/07/02 21:26 回答No.2 三角形の中線定理を使います。 「⊿ABCにおいてBCの中点をMとすると中線定理 AB^2+AC^2=2(AM^2+BM^2) が成り立つ。証明は簡単です。教科書に必ず出ています。面倒ならWebで探してください。」 平行四辺形ABCDにおいて対角線の交点をNとすると AB=CD=a AD=BC=b BN=DN=c/2 AN=CN=d/2 であって、⊿ABDにおいてNはBDの中点になっているので、中線定理を適用して AB^2+AD^2=2(AN^2+BN^2) a,b,c,dで表せば a^2+b^2=2[(c/2)^2+(d/2)^2]=c^2/2+d^2/2 ゆえに 2a^2+2b^2=c^2+d^2 書き直すと AB^2+BC^2+CD^2+DA^2=AC^2+BD^2 これは 「平行四辺形に対して4辺の長さの2乗和は対角線の長さの2乗和に等しい」 事を示している。 質問者 お礼 2015/07/06 21:31 有難うございます。 助かりました 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 1 nakaken88 ベストアンサー率57% (12/21) 2015/07/02 21:21 回答No.1 xy平面上で直接長さを計算すれば示せます。 平行四辺形を平行移動すればある1点の座標を(0,0)とすることができます。平行四辺形の残りの頂点は、(a,b),(c,d),(a+c,b+d)とかけるので、三平方の定理を使って、直接長さを計算してみましょう。 質問者 お礼 2015/07/06 21:31 有難うございます 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 1 カテゴリ 学問・教育数学・算数 関連するQ&A ゴーシュ四辺形 立体幾何の問題がわからないので質問します。 ゴーシュ四辺形ABCDは、添付した図のように対角線BDが分ける2つの三角形ABDとCBDとが、別々の平面上にあるものである。(もしほかの対角線ACを引けば、これと同じように2つの三角形BACとDACとは別々の平面上にある。また2つの対角線AC,BDは同一平面上にない。)という定義があって、 問題は、ゴーシュ四辺形の対辺が2組とも垂直であるときは、対辺の平方の和は相等しい事を証明する。 自分は、対辺の中点を結んで中点連結定理を使えば、各辺に平行な直線で長方形をつくれると考えたのですが、それでは、対辺の長さを比較するには、まわりくどそうですし、わからなかった。解説をよめば、四辺形の2隣辺を2辺とする平行四辺形を作れ。と書いてありました。対辺が垂直だから、解説のとおりに作った平行四辺形は、長方形になることがあり、その場合は隣辺の長さが違うので、証明できないとおもいます。もし解説のとおりに作った平行四辺形が、いつも正方形なら、証明はできると思いました。どなたかなぜ対辺の平方の和は相等しいのかを解説してください。お願いします。 中学生の幾何の問題で 塾で講師のバイトをしてるのですが、一つだけどうしてもわからない 問題があるのでどうか教えてください。 平行四辺形ABCDの辺CD上の点Eを通って、対角線BDに平行に 引いた直線と辺ADの延長との交点をFとし、直線AEと辺BCの 延長との交点をGとすれば、四角形DEGFの面積は平行四辺形 ABCDの面積の半分に等しい事を証明せよ。 奈良県の某有名私立中学の期末テストの問題なのですが、まだ中1 で相似を習っていないので出来れば相似を使わない解法で お願いしますm(_)m 図形の証明 以下の2つのことを、複素数を用いて示せという問題なのですが、どのようにして示せばいいのかわかりません。 どなたか教えてください。 1)平行四辺形の対角線は互いに二等分することを示せ。 2)ひし形の対角線は互いに直交することをしめせ。 2)は複素平面上でひし形を表し、その2本の対角線の傾きの積が-1になることを示せばよいのでしょうか? 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 図形の問題なんですが 平行四辺形ABCDにおいてAB=7、BC=8で対角線AC=13とする時、次の問いに答えよ。 設問1 角Bの大きさを求めよ。 設問2 この平行四辺形の面積を求めよ。 解き方を教えてください。 高校数学 面積と方程式と三角比?の問題がさっぱりで 4辺の長さの和がl(エル)で面積がSである正方形がある。この正方形に対しS=3lが成り立っている。 (1)このときl=Aである。 (2)4辺の長さの和がAで面積が5/9Sの長方形を作る。この長方形の2辺の長さはBとCである。 (3)となり合う2辺の2辺の長さがBとCで、その2辺のなす角がθである平行四辺形を作る。この平行四辺形の面積が4/9Sのときsinθ=D/Eである。またこの平行四辺形の2本の対角線の和はF√G+H√Iである。 A~Iに至る解き方と言うか手のつけ方が分かりません・・・。分かる方教えてください! 図形の問題(中学生レベル) 平行四辺形の点Eは辺ABの中点、点Fは辺BC上の点で、辺EFと辺ACは平行である。 また、点Gは対角線ACと線分DEとの交点、点Hは対角線AC上の点で、辺EGとFHは平行である。 このとき、三角形DGCの面積は三角形HFCの面積の何倍か求めよ。 以上の問いの解法を教えてください。 中1 幾何 右の図の正八面体において、斜線をつけた二つの面は平行である。この斜線をつけた面と平行な平面で体積を二等分する。 (1)その時の切り口はどんな形かを答えなさい。 (2)正八面体の一辺が5cmのとき、切り口の辺の長さの和は何cmになるかを求めなさい。 この問題が分かりません。どなたか教えてください。お願いします。 ベクトルと平面図形の問題です。4 ベクトルと平面図形の問題です。4 平行四辺形ABCDにおいて、辺ABを2:1に内分する点をP、対角線BDを1:3に内分する点をQとする。また、BA→=a→ BC→=c→とする。 (1)3点P、Q、Cは一直線上にあることを示せ。 PC→=4PQ→ となり、P、Q、Cは一直線上にある。 (2)PQ:QCを求めよ。 (2)が分かりません。答えは1:3です。 ヒントまたは解説をどなたかお願いします。 図形について 図形について、一つ難しい問題に遭遇しましたので、ご教授をお願い致します。 問題 平行四辺形の対角線をそれぞれ m、nとする。その対角線において出来る角をθとする。このとき、面積を m、n、θで表せ。 数学の図形 数学の図形問題で大変困っています。 画像を添付いたしましたが、見えにくいので問題文だけ抜き出します。 【問題】 右の図のように、面積が57cm2の正三角形4個で平行四辺形ABCDを作り、対角線BDを引いた。 このとき、斜線部分の面積の和を求めよ。 詳しい解説などを載せていただけると嬉しいです よろしくお願いしますm(__)m 中2の数学の問題が分かりません。図形の証明です。 塾の宿題として出された問題です。 問題 「平行四辺形の対角線はそれぞれの中点で交わる」という性質を、右の図を使って証明しなさい。 という問題です。 この場合右の図でわなく、画像の事です。 分かる方がいたら教えてくださいm(__)m 図形の証明 下の証明の問題を解いてください。 平行四辺形ABCDで、対角線の交点Oを通る直線を図のように引き、 2辺AB,CDとの交点をそれぞれP,Qとします。 このとき、OP=OQとなることを証明しなさい。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 平行四辺形の問題です 前の続きなのですが・・・。 平行四辺形ABCDがあり辺ABを2:3に分ける点E、線分DEと対角線ACの交点をF 対角線ACの中点をGとします。 平行四辺形ABCDの面積は△AEFの面積の何倍ですか? この問題なのですが、中学生レベルでの考え方と答えをお願いします。 幾何問題 問題 n角形の内角の和は180°×(n-2)であることを、次の手順で説明せよ。 (1)1つの頂点から出る対角線の数は何本か。 (2)その対角線により、いくつの三角形ができるか。 (3)内角の和を求めよ。 だれか、答えを教えてください。 図形問題 平行四辺形ABCDにおいて, E, Fはそれぞれ辺BC, CDの中点であるとき, 三角形DQFと五角形CFQPEの面積比を求めよ. これはどうやって求めるのですか? ベクトルの問題なのですが 四角形ABCDは平行四辺形ではなく、かつAB=BCである。 辺AB,CDの中点をそれぞれP,Q対角線AC.BDの中点をそれぞれM,Nとす。 PQ→とMN→をAD→、BC→であらわすにはどうしたらいいでしょうか>< あと平行四辺形でなくAB=BCってどんな四角形かも想像できないので教えてくださると嬉しいです。 平面図形の対角線でできる三角形について(算数) 小学生が解く平面図形の対角線でできる三角形についての問題について質問です。 下記問題が出ました。 --- 正方形 ひし形 長方形 平行四辺形 台形 の2本の対角線で切って4枚の三角形にわけます。 この時、①②の性質にあてはまるものをそれぞれ全て選びなさい。 ①同じ形、同じ大きさの三角形が4枚できる。 ②同じ大きさの三角形が4枚できる。 --- 答えは ①正方形・ひし形 ②正方形・ひし形・長方形・台形 --- となります。 紙を切って目視したら理解できるのですが、 これはなぜ、こうなるのか、理論的に小学3年の子供に説明する場合はどう説明したらよいでしょうか? ベクトルと図形についてです。 ベクトルと図形についてです。 平行四辺形ABCDにおいて、辺CDを2:1に内分する点をE、対角線BDを3:1に内分する点をPとする。3点A、P、Eは一直線上にあることを証明せよ。 教科書を読んでもいまいち分からないので詳しい解答教えてください。 図形の表現 問題文で、 「AB、ACを二辺とする平行四辺形で・・・」 という文が出てきたんですが、 「AB、ACを二辺とする」 とはどういう意味ですか? 数学 図形 平行四辺形において角ABC=120°、AB=5、BC=8のとき対角線BDの長さを求めよ。 解答・解説おねがいします(>_<) 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございます。 分かりやすく、助かりました