• ベストアンサー

メジアン数学演習 数学IA

体積が1の正四面体の各辺の中点を頂点とする正八面体の体積を求めよ。 という問題が解けなくて困っています。回答解説して頂けるとありがたいです

質問者が選んだベストアンサー

  • ベストアンサー
  • info222_
  • ベストアンサー率61% (1053/1707)
回答No.2

一辺1の正四面体(体積V=(√2)/12)は一辺が1/2の小正四面体を4個とり除けば求める正8面体が残るので 正8面体の体積=V(1-4(1/2)^3)=V/2=(√2)/24 …(答) となります。

その他の回答 (2)

  • yyssaa
  • ベストアンサー率50% (747/1465)
回答No.3

>体積が1の正四面体の1辺の長さはa=(12/√2)^(1/3) その1/2を1辺の長さとする正四面体の体積は (√2/12){(1/2)*(12/√2)^(1/3)}^3 その4倍を元の体積から引けばよいので、求める体積は 1-4*(√2/12){(1/2)*(12/√2)^(1/3)}^3=1/2・・・答

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

頂点をちょん切っただけ, でしょ? なにがわからんの?

関連するQ&A