- ベストアンサー
線積分?
次の曲線Cの長さs=∫[C]√(dr•dr)を求めよ。ただし、aはa>0なる定数とし、drのrはベクトルである。 (1) 放物線:y=x^2 (0≦x≦1) (2)心臓系:r=a(1+cosθ) (0≦θ≦2π) です。これって、線積分なのか良くわからないのですが、途中式もお願いします。
- みんなの回答 (2)
- 専門家の回答
次の曲線Cの長さs=∫[C]√(dr•dr)を求めよ。ただし、aはa>0なる定数とし、drのrはベクトルである。 (1) 放物線:y=x^2 (0≦x≦1) (2)心臓系:r=a(1+cosθ) (0≦θ≦2π) です。これって、線積分なのか良くわからないのですが、途中式もお願いします。