ベストアンサー 正則ってどういう意味? 2004/05/06 23:15 y1=xとy2=1/xがx=0で正則であるとはどういう意味なんでしょうか? 二つの式をx=0において正則か非正則か見分ける方法がわかりません。正則の意味が行列ではわかるのですが。おねがいします。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー siegmund ベストアンサー率64% (701/1090) 2004/05/07 01:04 回答No.1 行列の正則とは意味が違いますね. 関数 f(x) が x = x0 およびその任意近傍のすべての点において微分可能であるとき, x = x_0 で正則である,といいます. したがって,y1 = x は x=0 で正則ですが, y2 = 1/x の方は正則ではありませんね(x=0 で微分不可能ですから). こういう用語の定義はテキストには必ず載っています. まずはご自分で確認されますように. 質問者 お礼 2004/05/17 01:28 行列と混同していました!解決できました!ありがとうございました! 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 1 カテゴリ 学問・教育数学・算数 関連するQ&A 正則行列の証明問題 問題は「Aがm次正則行列、Dがn次正則行列ならばに二のm×n行列Cに対し次の行列X,Y,Zは正則であることを示せ。またX^-1,Y^-1,Z^-1を求めよ。 X= |A B| |0 D| Y= |A 0| |C D| Z= |B A| |D 0| 」 です。 証明は逆行列を求めて正則行列でないB、Cの逆行列が関与していないことを示すだけでいいですか? 解答がないんで確かめようがなくて困ってます。 よろしくおねがいします。 正則性について。 --------------------------------------------------- f(z)=1/(bar(z)) z = x + iy とし z ≠ 0においてf(z)が正則であるかどうか判定せよ。 また、 R>0に対して複素積分 ∫_[|z|=R]f(z)dz の値を求めよ --------------------------------------------------- という問題なのですが、 u=x/x^2+y^2, v=u/x^2+y^2とすると、 ∂u/∂x = y^2-x^2/(x^2+y^2)^2 ∂v/∂y = x^2-y^2/(x^2+y^2)^2 となり、コーシー・リーマンの判定式を用いると、 ∂u/∂x≠∂v/∂yとなり、条件を満たさないので、 f(z)は正則ではないという結果が出ます。 f(z)が正則ではないのは、(bar(z))=0で特異点を持つためだと思うのですがこの問題の場合、z≠0で除外されていますよね? この場合、正則なのでしょうか? おそらく、特異点の捉え方がよくわかっていないのだと思います。 また、 次の問題はコーシーの積分公式で求めると思うのですが、 この公式は、bar(z)の場合にもそのまま当てはめてよいのでしょうか? ご指導ご鞭撻の程、宜しくお願い致します。 正則行列 行列Aが与えられたとして、Aにある行基本変形を施して、A1になったとする。次に、この行基本変形に対応する基本行列をX1とする。つぎにこのA1に行基本変形を施して、A2になったとする。 この行基本変形に対応する行列をX2とする。X2A1=X2X1A=A2である。 このような行基本変形をn回繰り返した結果得られた行列が、An=Bとなったとすると、 B=An=XnAn-1=XnXn-1An-2=、、、=Xn、、、X1A となる。そこでXn、、、X1=Xと置くと、XA=Bとなる。もし、階段行列Bが単位行列ならば、Aは正則となり、XはAの逆行列となる。 (ここからがわかりません) 逆に、Aが正則ならば、どの行ベクトルも、零ベクトルではない。これは、Bが単位行列となることを意味する。 とあるのですが、A=正則、Xは基本行列の積だから、X=正則ですが、XA=BのBについてなぜ単位行列となるのでしょうか? 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 「正則はA≠0より強い」? 行列の教科書に 「行列Aは正則」は「行列A≠0より強い」 と書かれてました。 具体的には、どういう意味ですか。 正則な行列によってできる行列は正則か? 正則である行列A,Bがあるとします. この時,この行列のみの積を用いて行列を作った場合(例えばAB^-1Aなど),その行列は必ず正則であると言えるのでしょうか? もしくは,演算後の行列が正則であるかどうかは別問題であるのでしょうか? 反例や証明等があれば教えていただきたいです. よろしくお願いします. 行列で困っています x-y=1 2x+y=5 x+y=3 この連立方程式を逆行列を使って解け。 という問題の場合、3式同時に行列にすると係数行列が正方行列にならず正則でないから、2式ずつ3回に渡って逆行列を使って解いていくんでしょうか? 正則行列×正則行列は正則になりますか? この質問は個人的に疑問に思ったのですが、 行列A,Bが正則の時、ABとBAも必ず正則になりますか? 微分可能と正則 ω=f(z)がZ=a∈Dで微分可能である。 ω=f(z)がZ=aで正則である。 この2つの違いを明確に教えてください。 よくわからなくて困っております。 もう一つあります。 ω=f(z)=u(x,y)+iv(x,y)がD上正則であることの必要条件をコーシー・リーマンの関係式を用いて表わすにはどうしたらいいのですか? 正則について。 以下にしめす関数の正則性について、コーシー・リーマンの方程式を用いて調べなさい。また、正則であれば導関数も求めなさい。 f(z)=Ze^z で、z=x+viに対して、e^z=u+vi,e^z=e^x*e^y =e^x(cosy+isiny) とすると、 u=e^x*cosy,v=e^x*siny とこんな感じで解いているのですが、どこでコーシーリーマンの定理を使うかもわかりません。どなたかご指導お願いします!m(_ _)m 正則2部グラフ 正則2部グラフ 空でない正則2部グラフの2分割を(X,Y)とすると、XとYは同じ大きさであることを示せ。 という問題です。 2部グラフ…頂点集合が互いに素な部分集合XとYに分けられ、各辺の両端点は一方がXに、他方がYに含まれるグラフ 正則グラフ…すべての頂点の次数が等しいグラフ この定義は理解しています。ただ、問題が自明な感じがして証明が思いつきません。 どなたか証明法を教えてください。 種数と正則微分 こんばんは。 授業の小テストで出された問題なのですが、どうやって解けばよいのか分からなかったので質問させていただきました。 x^4+y^4=1の種数と正則微分を求めよ。 という問題なのですが・・・ 種数gは、y^4=1-x^4より重複度4、分岐度3より g=1/2(3+3+3+3)+1-4=3 と求めればよいでしょうか? 正則微分を求めるにはどのようにしたらよいのでしょうか? 宜しくお願いします。 線形代数 正則 逆行列 画像の(1)の問題で、正則とありますが、正則とはどういう意味ですか?また、この問題の逆行列は 1 0 0 -2 0 0 0 1 0 0 1 -2 -2 1 -4 8 であってますか?おねがいします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 正則行列について 非線形システムの本を読んでいて、 Aが正則行列なので、次のようなc>0が存在する |Ax|>=c|x| というのがあるのですが、どのようにしてこのcが出てきたのかわかりません。 このようなcの導出がわかる方、教えて下さい。お願いします。 f(z)=|z|^2はz=0では正則ではないことを示せ。 f(z)=|z|^2はz=0では正則ではないことを示せ。 解答 f'(0) = lim[z->0] {f(z)-f(0)}/z = lim[z->0] z~ となり、z=0で微分可能。 z=0で正則とは0のある近傍で正則ということであるが、 z≠0のときf(z)=x^2+y^2はコーシー・リーマンの方程式を満たさない。 …と載っているんですが、微分可能性にはついては先ほど質問し解決しました。 今度は正則について確認です。 f(z)={√(x^2+y^2)}^2 =x^2+y^2 =u+iv で 実部uはx^2+y^2 虚部vは0 u_x = 2x ≠ v_y =0 v_x = 0 ≠ u_y = 2y これらが一致しないので正則ではない …という答えでいいですか? 間違っていたら訂正をお願いします。 sI-Aは正則か http://www.gifu-nct.ac.jp/elcon/labo/endo-n/endo/lecture/syscon/node4.html このサイトを利用させていただきます (4.3)式 sX=AX+BU (sI-A)X=BU X=(sI-A)^(-1)BUと求めてますが sI-Aは逆行列を当然もつものとして扱ってます sI-Aはかならず正則なんでしょうか n次正方行列Aが正則であることの定義を述べよ。 n次正方行列Aが正則であることの定義を述べよ。 (逆行列を用いて定義するときは、その定義も述べよ。) という問題があるのですが回答は n次正方行列Aに対して AX=XA=En(n次単位行列) をみたすn次正方行列XがあるときAは正則であるといい、 このときの行列XをA-1(Aインバース)と表して 「Aインバース」と読みAの逆行列という。 これで合ってますか? あと n次正方行列Aが等式A^3+A-E=0を満たすとき、 Aは正則であることを示せ。 またA-1をAおよびEを用いて表せ。 この問題が分かりません。 どなたか宜しくお願いします。 正則行列と階数の問題 行列の階数の問題です 次の問に答えてください。 解答には、行列Aの階数がrであることと、正則行列P,Qが存在してPAQ={ (Er,0),(0,0) } (Erはr次単位行列)と変形できることとが同値であることを使ってよいそうです。 R,Sを正則行列とするとき、rank(RAS)=rank(A)が成り立つことを示せ 正則行列が苦手で性質があまり理解できません 正則行列R,SであることからPAQと同じ形になることを言っていいのでしょうか? それとも正則行列の性質から別の証明が必要なのでしょうか? わからなくて困っています、教えていただけるとありがたいです。 行列の固有値と対角化 次の行列Aの固有値と固有ベクトルを求め、正則行列Pをもとめよ。 A= 0 1 -2 -3 で|A-λE|= -λ 1 -2 -3-λ より -λ(-3-λ)+2=3λ+(λ^2)+2 =(λ+1)(λ+2) よってλ=-1、-2 λ=-1に属する固有ベクトルは y=-xより(x、y)=α(1、-1) λ=-21に属する固有ベクトルは y=-2xより(x、y)=β(1、-2) これより正則行列Pは 1 1 -1 -2 になると思ったのですが、答えを見ると 1 -1 -1 2 とありました。どうしてでしょうか? 正則行列の証明(代数学) 「n次正方行列Aについて次のことを証明せよ」という課題に取り組んでいます。ですが、下記の部分だけが合格できない状態です。力を貸して下さい。 『「Aは基本行列の積として表される」ならば「Aは正則」である。ことを証明せよ。』 というものです。解答としては、 「Aを基本行列の積に表す。基本行列は正則であり、正則行列の積はまた正則であるから・・」ということを証明すればいいと思うのですが・・・。アドバイスをお願い致します。 rankと正則について 3次の正方行列A,Bが rank(A)≦1 rank(B)≦1 を満たすならば、A+Bは正則でないことを示せ。 どうやれば示せるでしょうか?? rank(A)≦1 rank(B)≦1 から、A,Bは正則ではないことはわかりますが、そこからA+Bも正則でないということが示せません。 よろしくお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
行列と混同していました!解決できました!ありがとうございました!