• ベストアンサー

電磁気学、静電容量を求める

添付ファイルにて、電界E1、E2を求めたいのですが、よくわかりません。 E2を求めるには、ガウスの定理によりE×S=Q/εになるのですが、何故面積Sになるのでしょうか。閉曲面(円)を考えると、閉曲面の表面積なので4πr二乗になると思ったのですが。 また、E2についても、答えはE1と同じ値になるのですが、理解ができません。E2を考えるには、Bから出ている電界を考えるので、総電荷量は0になると思うのですが・・・ よろしくお願いいたします。

質問者が選んだベストアンサー

  • ベストアンサー
  • SKJAXN
  • ベストアンサー率72% (52/72)
回答No.4

ガウスの定理は、Q=∫(ε*E*dS) という定義式以外に、「電気力線は、曲面に接する平面に対して垂直な向きに湧き出し(導体球に与えられた真電荷が+の場合)または吸い込み(真電荷が-の場合)する」というものがあります。 このため対象が導体球であるケースでは、「電気力線は、球上のどの接平面からも垂直に湧き出しまたは吸い込みする」ため、球の中心から球外の距離rにおいて全電気力線を捉える総面積は 4*π*r^2 となります。これより定義式は、Q=ε*E*(4*π*r^2) となることから、導体球が球の中心から球外の距離rに作る電界は、E=Q/(4*π*ε*r^2) となります。 では、対象が平行平板導体であるケースについて考えます。「平行平板導体」の定義には、「奥行き、幅と比較して厚さは十分に小さい」という文言が隠れています。平行平板導体に真電荷Qを与えた場合は添付図の平行平板導体Aに相当しますが、電気力線は、平板に垂直な+x方向と-x方向にだけ湧き出します(「平行平板導体」の定義が効いています。これは、是非覚えて下さい)。平行平板導体Aから平板外の距離 x=t1/2±r において全電気力線を捉える総面積は 2*S となります。これより定義式は、Q=ε*Ea*(2*S) となることから、平行平板導体Aから平板外の距離 x=±r に作る電界は、Ea=Q/(2*ε*S) となります。 次に、平行平板導体に真電荷-Qを与えた場合は添付図の平行平板導体Cに相当しますが、電気力線は、平板に垂直な+x方向と-x方向にだけ吸い込みが発生します。上記と同じ要領で定義式は、-Q=ε*Ec*(2*S) となることから、平行平板導体Cから平板外の距離 x=(t1+d1+t2+d2+t3/2)±r に作る電界は、Ec=-Q/(2*ε*S) となります。これらは、平行平板導体が作る電界は、平板からの距離に依存せず一定であることを意味します(導体球とは異なります)。 次に、平行平板導体AとCが存在するケースを考えます。Aの外部領域(x<0)では、Aの電気力線は湧き出しであるため方向を考慮すると Ea=-Q/(2*ε*S) であり、Cは吸い込みであるため方向を考慮すると Ec=Q/(2*ε*S) であることから、合成電界 Ea+Ec は相殺されて0になります。Cの外部領域(x>t1+d1+t2+d2+t3)でも、同じ要領で0になります。そしてAとCで挟まれる領域(t1<x<t1+d1+t2+d2)では、Aは湧き出しで Ea=Q/(2*ε*S)、Cは吸い込みで Ec=Q/(2*ε*S) であるため、合成電界は、Q/(ε*S) となります。 最後に、上記の系に真電荷が与えられていない平行平板導体Bが存在すると、Bは電気的に中性でしたが電界 Q/(ε*S) の領域に存在することから、「静電誘導」という現象により導体内の電界が0になるように分極します。結果、Bの-x方向側に-Q、+x方向側にQが発生しますが、これは真電荷ではない(元々中性であった)ために新たに導体外に電界を作る要素とはなりません。よって、E1、E2ともに Q/(ε*S) となります。仮に、Bに真電荷が与えられていた場合は、E1とE2は異なることになります。

その他の回答 (3)

回答No.3

>>Cのみに-Qを置いた場合、電界はQ/2Sεになるのですが、何故なのでしょうか。 >図のように、電荷が極板の片方に片寄るからです。 答えが不十分でした。もう少し詳しい答えを・・・ 図のように、C が B と対向している場合、電荷が極板の片方に片寄るからです。 Cが単独の場合、-Q は極板の表裏の両方の表面に分散するので、表面電荷密度は 半分になり、電荷の広がる面積は倍になります。

回答No.2

>Cのみに-Qを置いた場合、電界はQ/2Sεになるのですが、何故なのでしょうか。 図のように、電荷が極板の片方に片寄るからです。 >ガウスの定理で考えると全電荷は-Qなので符号は-になると思ったんですが 閉局面の微小面積ベクトルの向きは、内部から外部に向かう方向です。 従って積分値が負になるからこそ下向きの E2 はプラスでなければ なりません。 >E2を考えるには、Bから出ている電界を考えるので、 >総電荷量は0になると思うのですが・・・ 総電荷量は図からもわかるように 0 です。

回答No.1

>ガウスの定理によりE×S=Q/εになるのですが、 >何故面積Sになるのでしょうか。閉曲面(円)を考えると、 >閉曲面の表面積なので4πr二乗になると思ったのですが。 どこにも球面などないのになぜそう思われるのでしょう? ガウスの定理の「意味」をもう一度確認してみてください。 S以外ありえないことが容易にわかると思います。

kalgi
質問者

補足

Cのみに-Qを置いた場合、電界はQ/2Sεになるのですが、何故なのでしょうか。ガウスの定理で考えると全電荷は-Qなので符号は-になると思ったんですが

関連するQ&A