ベストアンサー ベクトルと行列 2013/07/02 13:02 ベクトルと行列の問題です。 A=(1 2 B=(2 0 1 P=(1 3 4) -1 2 3) 3) 1、tBA 2、A-1 3、Ax=pの解を判定し、解をもつ場合はその解を教えてください みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー alice_44 ベストアンサー率44% (2109/4759) 2013/07/02 14:48 回答No.1 1、tB が判らないのかな? 問題の前後に書いてあるのを見なきゃ、誰にも判らないけど、 おそらくは、B の転置 という意味。(転置を知らなければ、教科書!) B が 2 行 3 列だから、転置は 3 行 2 列となって、 2 列だから、2 行の A との間に積 (tB)A が定義される。 行列の掛け算は、解るね? 2、A-1 がイマイチ正体不明だけれど、おそらくは、A の逆行列。 2 行 2 列の逆行列は、即座に書けなきゃ。 できないなら、貴方は、演習にはまだ早い。 まず、一度くらい教科書を読む。 3、A の逆行列が求まっていれば、単に x = (A^-1)p。 質問者 お礼 2013/11/07 12:44 ありがとうございました 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A ベクトルと行列 ベクトルと行列の問題です。 A=(1 2 B=(2 0 1 P=(1 3 4) -1 2 3) 3) 1、tBA 2、A-1 3、Ax=pの解を判定し、解をもつ場合はその解を教えてください 下記のように考えました 1の答え -1 0 6 8 10 14 2の答え -2 1 3/2 -1/2 3の答え 1 0 で合っていますか? 行列の固有ベクトルについて 行列A = (2 1 1 ) の固有値を求めたらλ=3(三重解)になりました。 (0 3 0 ) (-1 1 4) この行列の独立な固有ベクトルとしてp1=(1 0 1) 及びp2=(1 1 0)をとりました。 更に行列Aをジョルダン標準形にするために p3=(0 1 0)をとって、変換行列 P = (p1 p2 p3)と その逆行列によって行列Aを変換したのですが、ジョルダン標準形になりませんでした。 ところが試しにp2 = (0 1 -1)としてみたところ、ジョルダン標準形に変換できました。 p2=(1 1 0) とすることと p2 = (0 1 -1) とすることの差はなんなのでしょうか。 どちらも独立な固有ベクトルのように思うのですが・・・ 3×3行列の固有値と固有ベクトル 以下の行列Aの固有ベクトルを求めようとしているのですが,解を見つけられないでいます. 2 1 0 1 2 0 0 0 -2 計算を進めた結果,固有値λは3,1,-2となり,λ=3,1に対応する固有ベクトルはそれぞれ[1,1,0]t,[1,-1,0]tとなったのですが,λ=-2の場合で求めた固有ベクトル[1,1,k]t(kは任意の実数)がAx=λxに対応しない値になってしまいます.私の計算に何か問題があるのでしょうか? また,行列Aは対称行列なのでそれぞれの固有ベクトルの内積は0になると思うのですが,固有ベクトルの値が得られないことと何か関係があるのでしょうか? 回答よろしくお願いします. 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 行列 2行2列の行列Aと列ベクトルX、Pを A=(2 -t 1+t 1-2t)、X=(x y)、P=(4-p -1+2t) (1)連立方程式AX=Pが無数の解を持つとき、tの値を求めよ。 (2)連立方程式AX=Pが無数の解をもたないとき、tの値を求めよ。 教えて下さい。 行列の固有値と固有ベクトルの証明が分かりません (1)2×2行列A=(a b c d)の固有値は x^2-(a+d)x+(ad-bc)=0 の解で与えられることを証明せよ。 (2)(1)の行列Aが固有値α、β(α≠β)を持つとき α、βに対する固有ベクトルをそれぞれ2×1行列(p.q) (r.s)として 2×2行列P=(p.r.q.s) を作ると 2×2行列P-1AP=(α.0.β.0) なることを証明せよ。 という問題が分かりません。 調べてみたのですがよく分かりませんでした。 教えてください。 行列・ベクトルの問題で 行列・ベクトルの問題で a×b=-b×aを示せ というのがあるのですがどのように示せばいいのでしょうか 行列について教えてください。 行列についていくつか質問させて下さい。 1)(A+B)^-1の結果 (^-1は逆行列です。自分ではそのままA^-1+B^-1だ と思うのですが・・・) 2)置換行列について 例えば、線形方程式Ax=b(A:正方行列,x:求める解)を解く問題でA^=PAQ,x^=Q^-1x,b^=Pbと置換行列P,Qを用いてその後の処理(行列分割)を行うと、本で読んだのですがなぜ、置換行列を使っておきかえるのでしょうか? 置換しなくてもその後の処理(行列分割)はできると思います。 一つでもいいので解かる方よろしくお願いします。 行列と連立1次方程式 行列と連立1次方程式 連立1次方程式AX=Oの解 (1)連立1次方程式{ax+by=p⇔(a b)(x)⇔(p)⇔AX=Pと行列で表される。 cx+dy=q (c d)(y) (q) (1)の方程式で、P=Oのとき (2)方程式AX=Oは常にX=0を解にもつ (3)方程式AX=OがX=O以外の解をもつ⇔⊿(A) 解説 [1]A^-1が存在するとき AX=Oから、A^-1(AX)=A^-1O ゆえにX=O→解はx=y=0だけ [2]A~-1が存在しないとき すなわち ⊿(A)=ad-bc=0のとき,ad=bcであり、ax+by=0とcx+dy=0は、ともに定数項が0であるから同値となる。 教えてほしいところ 1.(3)の場合なんですが確かに、X=Oを解にもたないのでO以外と言えますが、O以外で必ず解をもつといえる理由を教えてください また、⊿(A)=0と同値であるといえる理由を教えてください。 2.ax+by=0とcx+dy=0は確かに定数項は0ですが、a=c,b=dかどうかわからないと同値とはいえないのでは?? ベクトルが3次元実ベクトル空間を動くとき 以下の行列Aについて、すべての問いに答えなさい。 |1 4 0 | A = |1 0 2 | |0 2 -2 | (1) 行列Aの固有値を求めなさい。 (2) 行列Aの各列をベクトルa1,a2,a3で以下のように表す。 A=(a1,a2,a3) これらの3個のベクトルの従属関係を式で示しなさい。 (3) ベクトルxが3次元実ベクトル空間(線型空間)V全体を動くとき、これによってつくられる点の集合を W1={Ax|x∈V} とする。この集合がつくる実ベクトル空間の次元を求めなさい。 (4) ベクトルpをp=t(1,2,1)とする。ベクトルxがx・p=0となるような3次元実ベクトル空間Vを動くとき、xがどのような図形を描くか答えなさい。なお、t()は転置を表し、x・pはxとpの内積を表す。 (5) (4)のようにxが動くとき、集合 W2={Ax|x∈V,x・a=0} がつくる実ベクトル空間の次元を求めなさい。 という問題があるのですが、 (1):λ1=3, λ2=0, λ3=-3 (2):略 (1),(2)は合ってる自信があります。 (3) |1 4 0 | |1 4 0 | A = |1 0 2 | = |0 -4 2 | |0 2 -2 | |0 0 0 | これはrank=2となり、xをかけてもrankは変わらないので、 次元は2 (3)は次元は合ってる気がするのですが、答え方が間違ってるような気がします。 (4),(5)の解き方が分かりません。 (4)はx・p=0なので直交することは分かるのですが、これをどう使うかが分かりません。 (5)は(4)が解けないと解けないのですが、(4)が解けたとしてもaというよく分からないの出てきてて、解けなくなってしまいそうです。 どなたか(3),(4),(5)を解いて下さる方いらっしゃいませんか? 行列の要素にベクトルの成分をいれる? ベクトルの成分を行列にするというのは習いました。 では、ベクトルを並べて 例えば 2次元のベクトルA,BとベクトルC,Dがあり、それぞれを並べて ( (2,1) , (3.5) ) と ( (2,4), (1.6) ) というようにして、A,Cの内積、B,Dの内積が入った行列を導出するようなことはできますか? (A,B)・(C,D) = (A・C , B・D) 仮にベクトルの成分行列を要素に持つ行列があると仮定して、(C,D)行列を転置すれば行列の 掛け算はできますが、内積を行うようなこうはできるのでしょうか。 行列の対角化について 行列Aが与えられていてその行列の固有値、固有ベクトルを求め、Aを対角化せよという問題があったとして、その問題を解くときに まず固有値を求め、固有ベクトルを求めるところまではいいんですが、 対角化するというときに固有ベクトルから行列Pを求め、P-1AP = 対角行列という風にすると思うんですが、この場合P-1APは実際にP-1を求めて計算する必要があるんでしょうか? はじめから対角行列であるということがわかっているように普通に書いてもよいんでしょうか? 固有ベクトル求め方 3×3行列 A= [ 7 2 2 ] [-6 -1 -6 ] [ 2 2 7 ] を対角化できるかどうか判定しなさい。 対角化できれば、対角化する行列P を1つ求めて、実際にP^(-1)AP を計算して対角化して下さい。 という問題の解法について、いまいちわからないことがあるので、質問します。 解法 まず固有値を求めます。 固有多項式は、Ψ(λ)=(λ-3)(λ-5)^2 で、λ=3、λ=5(重根)となります。 重根の場合、対角化できるか調べるために、 B=A-5Eとして、Bの階数(rank) を調べます。 B= [2 2 2] [-6 -6 -6] [2 2 2] となり、rank=1 よって、重根でも対角化できる、と結論づけて大丈夫なのででょうか? 別な判定方法として、最小多項式を求めて、これが重根ではなかったら「対角化できる」という判定方法があると思います。実際にこの問題の場合は、 (A-3E)(A-5E)=0となり、 最小多項式ψ(λ)=(λ-3)(λ-5)で重根を持ちません。 この判定方法は、前者の方法と「同値」なのでしょうか。同値であれば、その数学的理由を教えて下さい。 次に実際に固有ベクトルを求める過程での質問です。 λ=3についての固有ベクトルpは、 (A-3E)p=0 より [1] [-3] [1] と容易に求めることができます。 重根のλ=5に対する固有ベクトルの求め方について。 (A-5E)p=0 pの固有ベクトルの成分をxyzとします。 x+y+z=0となります。つまりrank=1となります。この式を満たす一次独立なベクトルを2つ見つけます。 x+y+z=0を満たす適当な数字を考えて x,y,z)=(1,1,-2)と(1,0,-1) としました。よってP= [1 1 1] [-3 1 0] [1 -2 -1] としました。そしたら、対角化できました。 しかし、一般的な解法(演習問題の解法)は、 x+y+z=0 より、x=-y-zなので、 s、tを媒介変数として、 x=-s-t y=s z=t より、 (x,y,z)=s(-1,1,0)+t(-1,0,1)と書けるので、 このλ=5に対する独立した固有ベクトルは、(-1,1,0)と(-1,0,1) である。 以上より、対角化する行列P= [1 -1 -1] [-3 1 0] [1 0 1 ] P^(-1)AP= [3 0 0] [0 5 0] [0 0 5] と対角化する、という方法をとります。わざわざ媒介変数stを使ってやるのは何故でしょうか。また、2つの固有ベクトルを直交するようにとってみました。 P= [1 1 1] [-3 -1 1] [1 0 -2] として計算したも対角化できました。結局、x+y+z=0を満たす独立なベクトルだったら、本当に何でもいいということですか? 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 大学数学(行列、ベクトル)の問題です。 解法がわかりません。どなたか得意な方教えてください。 行列A(3行3列)は上三角で、以下のように与えられるとする。 A=[11-2]…1行目、 [011]…2行目、[001]]…3行目 ベクトルbをb=[5,0,-1]^Tとする。このときAX=bを満たすベクトルXを求めよ。 答 [2,1,-1]^T 3次元ベクトルの回転と行列 3次元ベクトルA, B, Cを仮定します。ここで、AとBは既知のベクトルで、長さが同じとします。 その場合、当然ですがAを回転させるとBになります。 同様の作業をBにすることにより、Cのベクトルが得られます。 このCのベクトルを行列を用いて求めたいと考えているのですが、どうするか忘れてしまいました。 教えていただけるとありがたいです。 対称行列の固有ベクトル 対称行列の固有ベクトルは互いに垂直という性質がありますが、 固有ベクトル AX1=λ1 X1、 AX2=λ2 X2 の式から n次の対称行列Aは次のように書き表すことができます A= λ1 X1 X1^t +λ2 X2 X2^t+ ・・・ +λn Xn Xn^t なぜ固有ベクトルの式から対称行列の式が表すことができるのでしょうか? 証明を教えてください。よろしくお願いします。 正則行列・張られる空間 A=(1,5,-2,-1),B=(0,2,-4,3),C=(1,1,6,-7),D=(-2,-8,0,5)とおく。(C,D)=(A,B)Pを満たすような正則行列P(基底変換の行列)を求めて、A,Bによって張られるベクトル空間とC,Dによって張られるベクトル空間とが同じであることを示せ! 本の問題にあったのですが、解答が無くて、どのように解けば良いのか見当が付きません。 Pについては逆行列のことですか? よろしくお願います。 行列の方程式におけるランクの求め方 A、b、xという行列があって(xは解ベクトル)、Ax=bとしたときに、rankAとrank (A|b)を同時に求めたいとします。そのとき、行列(A|b)に基本変形を施して いくわけですが、行基本変形だけでなく、列基本変形も使ってよいと先生がおっ しゃっていました。でも、列基本変形を用いると、(A|b)という形が崩れてしま うのではないでしょうか? 行列の対角化 ┌1 -2 -2┐ A=│1 2 2│ └(-2) 2 1┘ という行列なのですが、対角化できるのでしょうか? 何度も何度も解きなおしてるんですけど対角化できません。 Aの固有方程式の解で重解になっているものがないので対角化は・・可能ですよね? 固有値として-1、±√7が求まるのですが、±√7に対する固有空間を考えるとどうしても固有ベクトルとして成分がすべて0の(3,1)行列しか出てこなく、対角化行列が ┌0 0 0┐ P=│1 0 0│ └(-1) 0 0┘ といったような行列になってしまうのですが、この場合P^(-1)が存在しないためP^(-1)*A*Pは存在しない事になり、Aは対角化不可能ということになってしまいますよね?? 多分どこか間違った理解をしているところがあると思います。 どなたかご教授お願いできないでしょうか? 固有ベクトルの逆行列が存在しない? 行列A= (0,1,1) (1,0,1) (1,1,0) の固有値と固有ベクトルを求める(ただし各固有ベクトルの最大の成分は1となるようにする) 問題なのですが, 固有値λ=-1(重解),2 と求め 固有ベクトルをそれぞれ x=(x1,x2,x3)=(1,-1/2,-1/2),(1,1,1) と求めたのですが, 対角化行列P= (1,1,1) (1,-1/2,-1/2) (1,-1/2,-1/2) の行列式が0になってしまいPの逆行列が存在しないことになってしまいます。 これはどこかで計算ミスをしているのでしょうか? それとも固有ベクトルに逆行列が存在しないことはあるのでしょうか? 自分ではこれ以上見直しても分からないので 教えてくださると助かります。 行列の対角化について (4 -5) (2 -3) という行列Aがあり、この行列の固有値が2とー1、固有ベクトルが a(5),b(1) (2) (1) となります。(ただしa,bは0でない任意実数) この行列Aを対角化するときに対角化するのに必要な行列をPであらわすと P=(5 1) (2 1) とできるとあるのですがこのPを P=(1 5) (1 2) とすることはできないのでしょうか? 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございました