• ベストアンサー

一次関数の基礎教えてください

xの変域を2つに分けて、yをxの式で表しなさい。 画像にグラフがあります。 0≦x≦10 y=1/2x 10≦x≦15 y=3x-25 この答の出し方と考え方を分かりやすい言葉で教えてください。 とくにy=3x-25の-25は計算で求める場合どうやって出せますか? 宜しくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • j-mayol
  • ベストアンサー率44% (240/540)
回答No.1

一次関数の一般式はy=ax+b です。 aを傾き(変化の割合)と呼び(yの増加量)/(xの増加量)で求めることができます。 bを(y)切片と呼び、グラフのy軸との交点のy座標の値となります。 0≦x≦10の範囲のグラフは (0,0)(10,5)を通っているためxが10増加したときyは5増加しているしたがって傾きは5/10=1/2 y軸との交点は(0,0)だから切片は0 したがってy=1/2xとなる。 10≦x≦15の範囲のグラフは (10,5)(15,20)を通っているためxが5増加したときにyが15増加しているしたがって傾きは15/5=3 切片はこのグラフをそのままy軸まで伸ばしたと考えるとxが10減少するとyは30減少するため5-30=-25 となり切片は-25 したがってy=3x-25となる。 または、2点を通る直線の式は機械的に連立方程式でも求められます。y=ax+bに2点の座標を代入して解くだけです。 (10,5)(15,20)を通っているため 5=10a+b 20=15a+b これを解いてa=3 b=-25 と求めても構いません。

TONGTONG08
質問者

お礼

非常に分かりやすく説明頂き、ありがとうございます。 すべてがクリアになりました。感謝感謝!!m(_ _)m

その他の回答 (1)

回答No.2

比例と反比例、一次方程式が分かれば、私立中学受験生ならば全員が解けます。 そうではない者も中一の間に理解できます。即ち、基本の理解が足りないのです。 算数からやり直しましょう。

関連するQ&A