ベストアンサー 数学3の図形の平行移動についての基本 2013/03/21 21:05 高1です。参考書の基本的な説明のところで理解ができません。添付の写真の下のほうで 「そうですね。つまり、二次曲線C'上の点(x’、y‘)は方程式f(x-p、y-q)=0をみたしている」というところが理解できません。 x’はx+pでy’はy+qなので、f(x+p、y+q)=0をみたすというようになるきがしてしまいます。 すいませんが、教えてください。 画像を拡大する みんなの回答 (3) 専門家の回答 質問者が選んだベストアンサー ベストアンサー alice_44 ベストアンサー率44% (2109/4759) 2013/03/21 22:19 回答No.3 (x',y') という書き方が、勘違いの大本です。 別の文字を使ってみましょう。 曲線 C : f(x, y)=0 上の点 (s,t) が、 x 軸方向に p、y 軸方向に q だけ平行移動して 点 (u,v) に移ったとします。 f(s, t) = 0, u = s + p, v = y + q です。 上式から s, t を消去すると、 f(u - p, v - q) = 0. この式が表すものが、(u,v) の軌跡ですから、 曲線 C を x 軸方向に p、y 軸方向に q 平行移動した 曲線 C' の方程式は f(x - p, y - q) = 0 です。 質問者 お礼 2013/03/21 23:29 分かり易い解説ありがとうございました。理解できそうな気がします。もう少し考えてみたいと思います。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (2) j-mayol ベストアンサー率44% (240/540) 2013/03/21 21:38 回答No.2 簡単な関数に置き換えて説明しますね。 例えば y=(x-a)^2+b という二次関数にしましょう。 この二次関数のグラフは y=x^2 のグラフをx軸の正の方向にa y軸の正の方向にbだけ平行移動したものになりますね。このグラフ上の点を(x',y')とします。 ここでf(x)=x^2とすると(x',y')はこのグラフ上の点ではありませんのでy'=x'^2は成り立ちません。あくまでもy'=(x'-a)^2+b を満たすだけです。では(x',y')をどうすればy=x^2に代入した際成り立つようにできるのか考えてみると、(x',y')はy=x^2上の点をx軸の正の方向にa y軸の正の方向にbだけ平行移動したものです。もとの場所に戻してやればy=x^2を満たすはずですね。 ということは(x',y')をx軸の負の方向にa y軸の負の方向にbだけ平行移動すればもとのy=x^2を満たす つまり(x'-a,y'-b)はy=x^2を満たすわけです。これを代入してやればy'-b=(x'-a)^2というy'とx'との関係式つまり平行移動した後のグラフの式が出てくるわけです。 質問者 お礼 2013/03/21 23:26 ありがとうございました。参考にさせていただきもう少し考えてみたいと思います。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 naniwacchi ベストアンサー率47% (942/1970) 2013/03/21 21:32 回答No.1 こんばんわ。 >「そうですね。つまり、二次曲線C'上の点(x’、y‘)は方程式f(x-p、y-q)=0をみたしている」 その直前で、 「(2)に代入すれば、f( x’- p, y’- q)= 0となります。」 と書かれていますね。 点(x’, y’)については、その式が成り立つところは理解していると思います。 ところが、考えている座標平面が「xy座標」なので、 図形を表す方程式は(x’, y’)ではなく (x, y)の関係式として与えられなければいけません。 そこで、x’→ x、y’→ yと言い換えているのです。 ただの式の変形というのではなく、どの点のことを指しているのかに注目するのがいいと思います。 質問者 お礼 2013/03/21 23:24 ありがとうございました。言い換えについてもう少し考えてみたいと思います。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A グラフの平行移動について(高校数学) グラフの平行移動を解く際に y-q=f(x-p) という公式を使って解くというように書いてあるのですが、何故上のような式になるのかその理論がどうしてもわかりません。 上の式自体は 『関数Aを移動した後の関数を関数Bとする。 関数A y=f(x)上の任意の点をQ(X,Y)とし、 x方向にp、y方向に移動した点をP(x,y)とすると、 x=X+p y=Y+q より X=x-p Y=y-q Qは関数A上にあるから Y=aX+b よって、関数Bの方程式は y-q=f(x-p) となる』 という解説から導かれたものらしいのですが、自分にはなぜこれ代入するだけで関数Bの方程式が導かれるのか理解できません。 それに、移動した点を元に関数を求めるのならば、 x=X+p y=Y+qを代入して y+q=f(x+p)になるような気さえしてしまいます。(もっとも正解が導けませんが……) 理論が判らなくても公式を使って問題は解けますが、どうしても気になってしまい悩んでます。どうかこの公式の意味をわかりやすく教えていただけませんでしょうか? よろしくお願いします。 改めて、2次関数の平行移動。 皆様宜しくお願い申し上げ致します。 2x2は、2xの2乗と理解して頂きたく思います。 昨日大変親切な方から解答を頂いたのですが、説明が数式ばかりで高校生の僕には結局理解出来ませんでした。 僕の数学的経験が浅いのが原因だと思います。 質問をさせて頂きます。 以下の文章は、数研の日本一難しい教科書の一節です。 放物線y=2x2をFとする。Fをx軸方向に3,y軸方向に4だけ平行移動して得られる放物線をGとすると、Gの方程式が y=2(x-3)2+4 すなわちy-4=2(x-3)2 になることは、既に学んだ。 此処までは理解出来ております。 このことは、次のように考えてもわかる。 以下の文章が僕には理解出来ません。 G上に任意の点P(x,y)をとり、上で述べた平行移動によってPに移されるF上の点を Q(X,Y)とすると x=X+3, y=Y+4 すなわち X=x-3,Y=y-4 点QはF上にあるから Y=2X2 この式のXにx-3を、Yにy-4を代入すると y-4=2(x-3)2 此処までは理解出来ます。 僕の考えでは、 点Q(X,Y)はあくまでも放物線F上にあるから、 Y=2X2 此処で、 X=x-3,y=y-4を、グラフF上の点Q(X,Y)に代入するのだから、代入し終わった 点Qの座標は、(x-3,y-4) 改めて、点QはグラフF上にあるのだから、 グラフFの方程式、 y=2x2 に、グラフF上の点Q(x-3,y-4)を代入するのだから、 y-4=2(x-4)2は放物線Fの方程式 と考えてしまいます。 教科書の記述では、 これは放物線Gの方程式である。 と書いて有ります。 何処が僕の数学的論理が間違っているのでしょうか? 何方か、数式だけで無くて、日本語も含めて説明して頂けると有り難いです。 是非是非宜しくお願い申し上げ致します! 二次関数の平行移動 二次関数の平行移動 理解できないところがたくさんあります。 ほとんど教科書丸写しなのですが 二次関数 F…y=x^2 を x軸方向にp, y軸方向にq だけ平行移動して 得られる二次関数G上に任意の点P(x,y)をとり、 平行移動前のF上の点Qを(X,Y)とすると x=X+p , y=Y+q → X=x-p , Y=y-q よって 点Q(x-p,y-q)で表される。 これをFの式に代入して y-p=(x-p)^2 → y=(x-p)^2+q これはGの式である。 ----------------------------------- (1)なぜ元の二次関数Fの点ではなく 動いた後の二次関数Gの点を(x,y)と基準?としているのかがわかりません。 「そうすると説明が上手くいくから」でしょうか? 平行移動する前を基準として考えれば 平行移動後が(x+p,y+q)になるじゃん!と思ってしまいます…;; (2)F上の点Qの座標をFの式に代入した式なのに なぜGの式になるのかがわかりません。 あと…… 任意という言葉の意味がいまいちわかりません。 その言葉の効果はどこで現れますか?? いってることが全ておかしかったらすみません。 理解力がほとんどありません。 よろしくお願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 放物線の平行移動についてちょっとした思い込みをしてるみたいです。 放物線の平行移動についてちょっとした思い込みをしてるみたいです。 『放物線y=2x^2をFとする。Fをx軸方向に3、y軸方向に4だけ平行移動して得られる放物線をGとする。 G上に任意の点P(x,y)をとり、上で述べた平行移動によってPに移されるF上の点をQ(X,Y)とすると x=X+3、y=Y+4 すなわち X=x-3、Y=y-4 点QはF上にあるから Y=2X^2 この式のXにx-3、Yにy-4を代入すると y-4=2(x-3)^2 これはGの方程式である。』 と数Iの教科書に書いてあります。 ちょっと疑問があります。 Q(X,Y)のXはx-3、Yはy-4と表してあります。 つまりQ(x-3,y-4)です。 QはF上の点です。 しかしY=2X^2にQを代入したらGっていうのに疑問を感じます。 Gは y-4=2(X-3)^2です。 しかしGは点Qを通ってません。 つまり、QはF上の点だから、Fの方程式になるんじゃないか?と思い込みをしてしまいます。 なんでですかね? まあ、FはすべてのXとYについて成り立ちます。つまり、Fの放物線を表す式はXとYが含まれていて、xとyは含まれない。 Gはすべてのx、yについて成り立ちます。つまり、Gの放物線を表す式はxとyが含まれていて、XとYは含まれない。 故に、求められた式はxとyの関係式であるからGの方程式である。 という解釈は大丈夫ですかね? 放物線の平行移動 放物線 y=2x**2+3x を平行移動した曲線で点(1,3)を通り、頂点が 直線 y=2x-3 上にある方程式を求めよ、という問題があります。 この問題の解答の導き方に、頂点の座標は (p, 2p-3) と表せる ので、求める方程式は、 y=2(x-p)**2+2p-3 となるとあるのですが、なぜこうなるのかがわかりません。 座標を移動させると元の式は y-(2p-3)=2(x-p)**2+3(x-p) となると思うのですが、この式を展開すると y=2(x-p)**2+2p-3+3(x-p) となり、3(x-p) が余分についています。 どこで考え方を間違っているのでしょうか。 解答の導き方では y=2x**2+3x の 3x のところが、4x でも 5x でも 同じになってしまわないのでしょうか。 二次関数グラフの平行移動、対象移動の問題です。 二次関数y=x^2のグラフをx軸方向にp、y軸方向にqだけ平行移動した後、x軸に関して 対象移動したところグラフの方程式は、y=-x^2-3x+3となった。 この時のp、qの値を求めよ。と問題があります。 平行移動してx軸に関して対象移動した後の式がy=-x^2-3x+3なので単純に基本形に してやるだけで良いと考えてy=-x^2-3x+3から-(x+3/2)^2+21/4となり p=-3/2、q=21/4が求まったのですが、解答はp=-3/2、q=-21/4でした。 二次式から基本形を求めるだけで何故適切な符号を持ったqが求まらないのでしょうか? x軸に対して対象移動した場合qの符号が変わるのは理解できるのですが、x軸に対して 対象移動した後の2次式からp、qを求めるので基本形を求めるだけで適切な符号を持った qが求まるような気がしているのです。どなたかこの疑問を教えてください。 放物線の平行移動 僕は今年高校に入った新入生です。分からないことがあるのでここに書かせていただきます。 数研出版の数学1には下記のようなことが書かれています。 * XXはXの平方ということです。 「放物線y=2xxをFとする。Fをx軸方向に3,y軸方向に4だけ平行移動して得られる放物線をGとすると、Gはy-4=2(x-3)(x-3)になる。 それは次のように考えても分かる。 G上に任意の点P(x,y)をとり上で述べた平行移動によって移されるF上の点をQ(X,Y)とすると x=X+3 y=Y+3 すなわちX=x-3 Y=y-4 点QはF上にあるからY=2XX この式のXにx-3をYにx-4を代入するとy-4=2(x-3)(x-3) これはGの方程式である。」 まず前提としてFとGの方程式やグラフは異なることは明確です。 しかしFの方程式 Y=2XX にX=x-3 Y=y-4を代入すると y-4=2(x-3)(x-3) つまりGの方程式になります。 このままではこの二つは同じ方程式ということで重なった放物線になってしまいます・・・。どこが間違っているのでしょうか。ご指摘をお願いします。 2次関数の平行移動。 教科書数学1の記述です。 放物線y=2x2をFとする。Fをx軸方向に3,y軸方向に4だけ平行移動して得られる放物線をGとすると、Gの方程式が、 y=2(xー3)2+4 すなわち y-4=2(xー3)2 になることは、既に学んだ。 此れの記述の意味は分かります。 このことは、次のように考えてもわかる。 G上に任意の点P(x,y)をとり、上で述べた平行移動によってPに移されるF上の点を Q(X,Y)とすると x=X+3,y=Y+4 すなわちX=x-3,Y=yー4 点QはF上にあるから Y=2X2 この式のXにx-3を、Yにyー4を代入すると yー4=2(xー3)2 これは放物線Gの方程式である。 の、記述の意味がイマイチ何を言いたいのか良く分かりません。 多分、G上の任意の点P(x,y)の、任意、と言う言葉がヒントに成ってる様な気がします。 何か、キツネに騙された様な気がして、頭の中が、スッキリしません。 何方か、僕の頭の中をスッキリさせてくれる様な回答を宜しくお願い申し上げ致します! y=f(x)の平行移動について 移動前のグラフの座標の位置を(X,Y)とおくと Y=f(X) Xを正にp移動させた座標をx Yを正にq移動させた座標をy とおく。 x=X+p y=Y+q ここでY=f(X)に代入するために X=x-p Y=y-q として y-q=f(x-p) y=f(x-p)+q これが移動後の式になる とのことなのですが XとYは移動前の座標ですよね。 ということはXと=のx-pとYと=のy-qは移動前の座標を表しているいうことではないのですか? y=f(x-p)+q これが移動後の式になる意味がわかりません。 私の考え方はどこで間違ってしまっているのでしょうか? グラフの平行移動について y=mxを、x軸方向に2,y軸方向に3、平行移動したあとのグラフがy-3=m(x-2)になるのですか? この質問にこのような回答がありました。 移動後の方程式Y=f(X)の点を(a,b)とすると 移動前の方程式y=f(x)を満たす点が(a-2,b-3)となる。よってx,yに代入してb-3=m(a-2)が成り立つ。 従ってy-3=m(x-2) ここで質問なのですが、移動前の方程式に移動前の点を代入したらそれは移動前の方程式じゃないのですか?(a-2,b-3)は移動前の方程式の通る点だし、代入した方程式y=f(x)も移動前のものです。なのに移動後の方程式になるっていうのは納得できません。理解力がないのです。本当に困ってます助けてください 数学における「一般に」とは何なのでしょうか? 一般に、関数y=f(x)のグラフFをx軸方向にp、y軸方向にqだけ 平行移動して得られる曲線Gの方程式は y=f(x-p)+q という文章が参考書に載っていました。 ここで、「一般に」という言葉が何故存在するのかわからないのです。 例外があるということ、つまり特殊な例の存在を示唆しているのでしょうか? よろしくご教授ください。 ちなみに問題が解けないのではありません。 2次関数の平行移動の証明 どうしても納得できないので質問させていただきます。 2次関数y=ax^2をx軸方向にp、y軸方向にqだけ平行移動した放物線の方程式が y-q=a(x-p)^2 であらわされることを証明せよ。という問題なのですが、証明は 点(x,y)をx方向にp、y方向にqだけ平行移動した点を(X,Y)とおくと、 X=x+p Y=y+q が成り立ち、これを変形すると x=X-p y=Y-q となるので、この式をy=ax^2に代入すると Y-q=a(X-p)^2 ゆえに求めるものはy-q=a(x-p)^2 となっているんですが、最後の Y-q=a(X-p)^2・・・(*1) が y-q=a(x-p)^2・・・(*2) に変換される理由がよくわかりません。こちらの解釈では、 (*1)が表すのは平行移動前の放物線を(X,Y)を使って言い換えた式。 (*2)も同じように考えてy-q=Y、x-p=Xすなわちy=Y+q、x=X+q、なのでY=aX^2という式を平行移動したという式になるのではないか、 という感じです。わかりにくいかもしれませんが、自分でもよく説明できずにいます。 なんかすごい根本的なことを勘違いしてるような気がして不安です。どなたか説明していただきたいです。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 二次関数 平行移動証明 二次関数F:y=x^2をx軸方向にp、y軸方向にq平行移動して得られる二次関数G上の任意の点を(x,y)とすると平行移動前は(x-p,y-q)で表されこれはF上の点であるから代入してy-q=(x-p)^2⇔y=(x-p)^2+q F上の点であるから代入して上式が得られるのはわかるのですが なぜこれがGの式を表わすのか分りません。 教えてください。お願い致します。 数学です! 次の式で定義される曲線Cがある。 x=((3t^2)/4)+2、y=(-t^3)/4 曲線C上の点Pにおける接線と直線x=-1との交点をQとする。PがC上を動くとき、線分PQを2:1に内分する点が描く曲線の方程式を求めよ。 よろしくお願いします>< 数学I グラフの平行移動 関数y=f(x)のグラフをx軸の方向にp、y軸の方向にqだけ平行移動して得られるグラフが表す関数が、y-q=f(x-p)になる理由が分かりません。教えてください。お願い致します。 平行移動がマイナス 平行移動がマイナスになる理由がいまいち理解できません。 どうしても もとy=x^2 あとがy=X^2 x+p=Xと考えてしまいます。 明らかにおかしいので ある関数P y=f(x)がありx軸方向にp移動させたとします。 もとの関数Pを(x,y)としあとにできた関数を(X,Y)とすると x+p=X y=Yですよね。 つまりx=X-pでありあとのできた式からp引いたものがもとの式と一致する。 ということなんですが 代入してもxを代入するのでy=f(X-3)でもありますがy=f(x)にかわりなく同じ式になってしまう気がします。 ここが一番不思議です。 単にp移動しても移動する前と移動したあとのyの値が一定なので pを引かないと同じ数にならないって考えればいいのですが。 似たようなもので 円の縮小でy軸方向に1/2縮小した場合 円が(s,t) あとが(x,y) s^2+t^2=r^2で x^2+(y/2)^2=r^2 としたらいけなく x^2+(2y)^2=r^2で yがt/2の値をとると同じxの値を取れるので2yとすると感覚的にはわかりますが いつももとの式に戻したときどうなるのかって言う考えがよくわかりません。 2次関数の平行移動。の者です。 点QはF上にあるから Y=2X2 この式のXにxー3を、Yにyー4を代入すると、yー4=2(xー3)2 何ですが、あくまでも、xー3,yー4は其々、X,Y、つまり、 X=xー3,Y=yー4 なのですから、 Y=2X2 を成り立たせる、放物線Fの方程式が、 yー4=2(xー3)2 の様な気がして成りません。 僕の何処が、数学的に、間違った考えなのでしょうか? グラフの平行移動 はじめまして。 数学IAの二次関数の問題に行き詰りました。。 放物線 y=x^2-4x を、x軸方向に2(p)、y軸方向に-1(q)だけ平行移動して得られる放物線の方程式を求めよ。 と、いう問題なのですが・・・ y-q=f(x-p)に当てはめて計算する、と解説されているのですが、イマイチわかりません。 自分の頭ではこう計算しているのですが、 y-(-1)=(x-2)^2 y=(x-2)^2-1 y=x^2-4x+4-1 y=x^2-4x+3 本に書かれている解答は、 y-(-1)=(x-2)^2-4(x-2) y+1=x^2-4x+4-4x+8 y=x^2-8x+11 と、説明されています。 この、-4(x-2)というのがどう計算されて出てきてるのかまったくわからないのです。 教えていただきたいです。 お願いします。 グラフの平行移動 昔からうまく納得出来ていないことなのですが。。 例えば、点(a,b)をx軸方向にp、y軸方向にq、移動すると、点(a+p, b+q)へ移りますよね? それに対して、グラフを平行移動する時は、 y = ax + bであれば、 y - q = a (x - p) + b となります。 ここで、なぜpとqを足すのではなく、引くのかがよく分からないのです。 y = ax + b上の任意の点をX,Yと置いて、移った後の点をx,yと置くと、 x = X + p y = Y + q これを変形して、 X = x - p Y = y - q X、YはY = aX + bなので y - q = a (x - p) + b である。 というのでは、いまいち納得できないのです。 これでは、単に式の変形途中で引くになったから、 「引く!!」みたいな。。感じで。。 なにか直感的に分かるような解説はないでしょうか? 関数の平行移動について 頭が混乱しているのでお願いします! 関数の平行移動について,です. 点(x,y) を x軸方向へp, y軸方向へq だけ平行移動した点は, (x+p, y+q) ・・・ (1) となります. 一方,関数 y = f(x) を x軸方向へp, y軸方向へq だけ平行移動したら y-q = f(x-p) ・・・ (2) となります. なぜ同じように平行移動させているのに,(1)では符号がプラスになって,(2)では符号がマイナスになるのでしょうか? できれば,数式の変形による説明ではなくて,直感的(視覚的)な説明にしていただけると幸甚であります. それではよろしくお願いします♪♪♪ 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
分かり易い解説ありがとうございました。理解できそうな気がします。もう少し考えてみたいと思います。