• ベストアンサー

√を使った数式の解き方がわかりません

下記の数式の解き方がわかりません。 【aの値を求めよ】 0.8 = 0.6/√{(0.8-a)^2+0.6^2} (^2は二乗です) 答えは参考書にのっているのですが(a=0.35)、途中の解き方が分からず困っています。 できたら途中の式を省かずに、教えていただきたいです。 どうぞよろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
noname#175206
noname#175206
回答No.2

>0.8 = 0.6/√{(0.8-a)^2+0.6^2} 0.8×√{(0.8-a)^2 + 0.6^2} = 0.6 ←両辺に√{(0.8-a)^2+0.6^2}を掛けた √{(0.8-a)^2 + 0.6^2} = 0.6/0.8 ←とりあえず、左辺の0.8で両辺を割っておく(やらなくても構わない) √{(0.8-a)^2 + 0.6^2} = 3/4 ←普通の分数に直しておこう(やらなくても構わない) (√{(0.8-a)^2+0.6^2})^2 = (3/4)^2 ←両辺を2乗すれば√が無くせる (0.8-a)^2+0.6^2 = (3/4)^2 ←ルートを外すとこうなる (0.8-a)^2 = (3/4)^2 - 0.6^2 ←両辺から0.6^2を引いた √{(0.8-a)^2} = √{(3/4)^2 - 0.6^2} ←左辺が2乗のままでは難しそうだから、両辺を√にしよう 0.8-a = √{(3/4)^2 - 0.6^2} ←2乗したものの√を取ると、√と2乗が打ち消し合う -a = √{(3/4)^2 - 0.6^2} - 0.8 ←両辺から0.8を引く a = 0.8 - √{(3/4)^2 - 0.6^2} ←両辺にマイナス1を掛けてから、ちょっと整理 a = 0.8 - √{(3/4)^2 - (3/5)^2} ←√の中を分数で統一してみる(小数で統一しても良い) a = 0.8 - √(9/4^2 - 9/5^2) ←√の中の2乗の部分を計算したが、分母の計算は後回し a = 0.8 - √{9×5^2)/(4^2×5^2) - (9×4^2)/(4^2×5^2)} ←√中の分数を足し算するために通分するが、分子と分母の計算は後回し a = 0.8 - √{9×(5^2 - 4^2)/(4^2×5^2)} ←分子の9が公約数なので使おう a = 0.8 - √{9×(25 - 16)/(4^2×5^2)} ←2乗の部分を計算 a = 0.8 - √{9×9/(4^2×5^2)} ←さらに分子を計算すると、9を2回掛けることが分かる a = 0.8 - √{9^2/(4^2×5^2)} ←じゃあ、2乗の形で書いちゃえ a = 0.8 - √{9^2/(4×5)^2} ←分母の掛算を見ると、4×5の2乗だ a = 0.8 - √{9/(4×5)}^2 ←そうすると、分子分母全体の2乗と書けるぞ a = 0.8 - 9/(4×5) ←それなら、√と2乗が打ち消すじゃないか a = 0.8 - 9/20 ←分母を計算しよう a = 0.8 - 0.45 ←9/20を小数に直そう(0.8を分数の8/10にしてもよくて、9/20との通分を考えると約分しなくていい) a = 0.35 ←計算できた(分数で計算して、7/20でも正解)

huku2960
質問者

お礼

非常に詳しく教えていただきありがとうございます。 回答に習って解いていると、パズルのように右辺がまとまっていったのでとてもすっきりしました。

その他の回答 (3)

noname#175206
noname#175206
回答No.4

 しかし、もう一つ答えがあるのです。って、書いてたら#1 asuncion様のご回答が。かぶりますが、……ええい、書いちゃわないと完結しないし。すみません。  先の回答#2から。 >√{(0.8-a)^2} = √{(3/4)^2 - 0.6^2} ←左辺が2乗のままでは難しそうだから、両辺を√にしよう >0.8-a = √{(3/4)^2 - 0.6^2} ←2乗したものの√を取ると、√と2乗が打ち消し合う  先の回答では、正の場合だけの計算を進めました。このときに負もあり得るんですね。たとえば、√1^2=1ですし√(-1)^2=√1=1です。  aがどういう値か分かりませんから、(0.8-a)がマイナスということも考慮する必要があります。 √{(0.8 - a)^2} = √{(3/4)^2 - 0.6^2} ←左辺が2乗のままでは難しそうだから、両辺を√にしよう -(0.8 - a) = √{(3/4)^2 - 0.6^2} ←2乗したものの√を取ると、√と2乗が打ち消し合う a - 0.8 = √{(3/4)^2 - 0.6^2} ←左辺のマイナスを計算しておく (中略) a = 1.25 ←計算しても出ますが、上の式と先ほどの答を考えれば、0.45に0.8を足せばいいことも分かるはずです。つまり、 >a = 0.8 - 0.45 ←9/20を小数に直そう(0.8を分数の8/10にしてもよくて、9/20との通分を考えると約分しなくていい) が、 a = 0.8 + 0.45 ←9/20を小数に直そう(0.8を分数の8/10にしてもよくて、9/20との通分を考えると約分しなくていい) になります。√{(3/4)^2 - 0.6^2}が0.45だから、ですね。

huku2960
質問者

お礼

より詳しく教えていただきありがとうございます。 質問の記載の仕方が悪く申し訳ありません。 確かに1.25も解ということがわかりました。

  • asuncion
  • ベストアンサー率33% (2127/6289)
回答No.3

>√{(0.8-a)^2} = √{(3/4)^2 - 0.6^2} ←左辺が2乗のままでは難しそうだから、両辺を√にしよう 右辺に±が付いていないのはどうしてでしょうね。

huku2960
質問者

お礼

ご指摘ありがとうございます。 質問の記載の仕方が悪くすみません。 (a=0.35と決めてしまった) 確かに1.25も解でした。

  • asuncion
  • ベストアンサー率33% (2127/6289)
回答No.1

0.8 = 0.6/√{(0.8-a)^2+0.6^2} √{(0.8-a)^2+0.6^2} = 0.6/0.8 = 3/4 (0.8-a)^2+0.6^2 = 9/16 (0.8-a)^2 = 9/16 - 0.36 = 9/16 - 9/25 = 81/400 0.8-a = ±9/20 = ±0.45 a = 0.8±0.45 = 0.35, 1.25

huku2960
質問者

お礼

簡潔にまとめていただきありがとうございます。 分数にすることで、二乗を取り除けることが重要だとわかりました。