ベストアンサー 複素関数(正則関数) 2012/11/26 22:07 この問題の考え方、解き方を教えて下さい。 まずはじめになにをすればいいか分かりません。 問、関数w = i z^2 によるx=1、y=1の像の方程式を求めよ。 お願いします。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー ereserve67 ベストアンサー率58% (417/708) 2012/11/26 23:12 回答No.1 z=x+iy,w=u+ivとします.x,yはzのそれぞれ実部,虚部とよびます.u,vも同じです. x=1:z=1+it(t:実数)の像は u+iv=w=iz^2=i(1+it)^2=i(1-t^2+2it)=-2t+i(1-t^2) ⇔u=-2t,v=1-t^2=1-(u/(-2))^2=1-u^2/4 v=-u^2/4+1はuv平面上の上に凸の放物線です. y=1:z=s+i(s:実数)の像は u+iv=w=iz^2=i(s+i)^2=i(s^2+1+2is)=-2s+i(1+s^2) ⇔u=-2s,v=1+s^2=1+(u/(-2))^2=1+u^2/4 v=u^2/4+1はuv平面上の下に凸の放物線です. 質問者 お礼 2012/12/01 00:33 回答ありがとうございます。 解き方を理解できました 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育自然科学科学 関連するQ&A 複素関数の正則性。 領域 D が実軸に関して対称であると仮定する。w = f(z) が正則ならば,w = f(¯z). も正則であることを示せ。 という問題が分かりません。 最終的に、「コーシー・リーマンの関係式を満たすので正則」と結論づけたいのですが、実際の関数が与えられていないため、∂u/∂xや∂v/∂yなどの計算ができなくて困っています。 どうすれば良いのでしょうか? よろしくお願いします。 複素関数の正則性。 誤って、回答締め切りをしてしまったため、再度立てさせていただきます。すみません。 領域 D が実軸に関して対称であると仮定する。w = f(z) が正則ならば,w =¯f(¯z). も正則であることを示せ。 という問題が分かりません。 最終的に、「コーシー・リーマンの関係式を満たすので正則」と結論づけたいです。 z=x+iy として、f(x-iy)とします。 fが具体的に与えられていないため、どのように∂u/∂xや∂v/∂yなどの計算を行えば良いのかが分かりません。 どうすれば良いのでしょうか? よろしくお願いします。 複素関数の導関数 微分の定義 lim{Δz→0} {f(z + Δz) - f(z)}/Δz に立ち戻らずに偏微分などを使って複素関数の導関数を求めたいのですが。 w = f(z) = u + iv, z = x + iy (x,y,u,vは実数) として f'(z) = dw/dz = (d/dz)(u + iv) までは合ってますよね? ここから du/dz = (∂u/∂x)(∂x/∂z) + (∂u/∂y)(∂y/∂z) として ∂z/∂x = 1, ∂z/∂y = i より du/dz = ∂u/∂x - i ∂u/∂z 同様に dv/dz = ∂v/∂x - i ∂v/∂z としてしまっていいのでしょうか? 実際の例としてf(z) = sin(z)を例に教えてください。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 複素関数 解き方(過程)を教えてください。 関数w=1/z' (z'は共役複素数)について 円|z-3i|=1はどんな図形にうつるか? 答え・・・円|w-(3/8)i|=1/8 z=x+iy, z'=x-iy ,w=u+ivとおいて x=u/(u^2+v^2), y=v/(u^2+v^2)となり これを|z-3i|=1に代入しましたがうまく解けません。 正則関数に関する問題で・・・ 次の問題がよくわからないので良かったら教えてください。 Q,f(z)=(e^iz―e^-iz)/2i :z=x+iyとする。 1. u(x,y)=Re(f(z)), v(x,y)=Im(f(z))を求めよ。 2.コーシー・リーマンの方程式を用いてf(z)が正則となる領域を求めよ。 1のほうは複素数になっちゃうんですが自信がないのでどうかお願いします。 複素関数cos(z)の微分について w=u+iv=cos(z)とおいたときに,wがzの全域でコーシー・リーマン方程式(∂u/∂x=∂v/∂y,∂u/∂y=-∂v/∂x)を満たすことを示し,微分係数を求めよ.(z=x+iy,iは虚数単位) と言う問題です. 解答を見てみると, cos(z)=cos(x)cosh(y)-isin(x)sinh(y) の加法定理の関係式を使い, u=cos(x)cosh(y) v=-sin(x)sinh(y) したがって, ・∂u/∂x=-sin(x)cosh(y) ・∂u/∂y=cos(x)sinh(y)・・・I ・∂v/∂x=-cos(x)sinh(y) ・∂v/∂y=-sin(x)cosh(y)・・・II よって,コーシー・リーマン方程式を満たしている. となっていました. 疑問なのは,複素関数cos(z)の微分について調べているのに,IとIIでそれぞれcosh(y),sinh(y)の微分をしていることです. cosh(y)=cos(iy),isinh(y)=sin(iy) なので,これも複素関数の微分となり,ここでは使ってはいけないのではないのでしょうか? ほかの方法があれば教えてください.また, {cosh(y)}'=sinh(y),{sinh(y)}'=cosh(y) となる理由もよろしくお願いします. 複素関数の問題です。 複素関数の問題です。 複素関数の問題で分からない問題があって困っています。 【問題】 F(z)=u(x,y)+iv(x,y), z=x+iy において u(x,y)=a, v(x,y)=b で表される曲線をxy平面上に描いたとき、それらの交点においてF´(z)≠0であれば、その交点における各曲線に対する接戦が互いに直交することをコーシー・リーマンの関係式を用いて示せ。ただしF´(z)はF(z)の導関数であり、関数u(x,y)の点(x,y)での微分は、 du=(∂u/∂x)dx+(∂u/∂y)dy で与えられる。 わかる方がいれば、どうか教えていただけないでしょうか? よろしくお願いします。 次の複素関数の解き方,解答を教えてください 次の複素関数の解き方,解答を教えてください 正則関数f(z)の実部をu = u(x, y),虚部をv = v(x, y)とおくとき(2u - v) + i(u + 2v) が正則かどうかコーシー・リーマンの方程式を利用して調べよ。 お願いします。 複素関数の1例について質問 複素関数の1例について質問 f(z)=z^2-3z+2 のとき、その導関数は f’(z)=2z-3 で良いですよね。 逆に、曲線Cに関する積分は、(cの表示は省略) ∫f’(z)dz=∫(2z-3)dz=z^2-3z+C となるので良いと思います。 ここで、z=x+iy と置いて同様のことをすると、 f(z)=(x+iy)^2-3(x+iy)+2 =(x^2-y^2-3x+2)+i(2xy-3y) f’(z)=∂u/∂x+i∂v/∂x =2x-3+i(2y) (=2(x+iy)-3=2z-3) で良いですよね。 逆に、曲線Cに関する積分は、(cの表示は省略) 一般に ∫f(z)dz=∫(udx-vdy)+i∫(vdx+udy) なので、 ∫{2x-3+i(2y)}dz =∫(2x-3)dx-∫2ydy+i∫2ydx+i∫(2x-3)dy =x^2-3x-y^2+C+i(2xy)+i(2xy-3y) =(x^2-y^2-3x+C)+i(4xy-3y) となりましたが、 虚数部が(2xy-3y)になっていません。 何故でしょうか? ご教示、よろしくお願いします。 複素関数の正則に関する問題 以下の問題が解けません。 次の件数f(z)が正則となるように係数a,bを定め,その導関数f'(z)を求めよ。 f(z)=e^(ay)*cos2x+ie^(by)*sin2x です。 係数a,bが上手く求められません。 教えてください。 複素関数に関する質問 春休みに入ったので、応用数学の演習問題をやっているのですが、 複素関数の分野で分からない問題がいくつかあります。 休み中なので、誰かに聞くことも難しいため解説、解答をよろしくお願いします。 1. 実数を係数とする代数方程式 f(x)=0 が、実数でない複素数zを解に持つならば、 共役複素数z~(ゼットバーのつもり)も解であることを証明せよ。そのとき z = a+ib とすれば、整式 f(x)=0 は x^2-2ax+a^2+b^2 で割り切れることを 証明せよ。(^は階乗) 2. w = 1/z により、次の直線または円はどんな直線または円に変換されるか。 (1) 単位円 |z| = 1 と2点 P、Q で交わる直線 (2) 単位円に1点 P で接する直線 (3) 点 i を中心とし原点を通る円 3. 次の関数は z 平面のそれぞれの領域を w 平面の単位円の内部に 写像することを示せ。 (1) w = (z^2 - a)/(z^2 - a~)、Im a > 0、 第1象限 {z | 0 < arg z < π/2} (2) w = (e^z - 1)/(e^z + 1)、帯状領域{z | -π/2 < Im z < π/2} ( ^ は階乗、~はバー) 複素関数の円 w=z×z+z(z=x+iy) により、z平面における円 |z+1/2|=1はw平面ではどのような図形(方程式で)になるかという問題なのですが教えてください 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 正則について。 以下にしめす関数の正則性について、コーシー・リーマンの方程式を用いて調べなさい。また、正則であれば導関数も求めなさい。 f(z)=Ze^z で、z=x+viに対して、e^z=u+vi,e^z=e^x*e^y =e^x(cosy+isiny) とすると、 u=e^x*cosy,v=e^x*siny とこんな感じで解いているのですが、どこでコーシーリーマンの定理を使うかもわかりません。どなたかご指導お願いします!m(_ _)m 複素関数の問題 次の問題の解き方あっているでしょうか? 「cosz=2を満たす複素数zを求めよ」 cosz=(e^(iz)+e^(-iz))/2なので、 (e^(iz)+e^(-iz))/2=2 e^(iz)+e^(-iz)=4となるから、両辺にe^(iz)を掛けて e^(2iz)-4e^(iz)+1=0 これは、e^(iz)の二次方程式なので、解の方程式より e^(iz)=2±√3 ここで、z=x+iyと置き換えると、 e^(-y)e^(ix)=(2±√3)(e^i(2nπ))となり y=-log(2±√3) x=2nπ よって、z=2nπ-log(2±√3)となる。 複素関数 複素関数f(z)=z^2 (z=x+yi) に対して、その実部のグラフってどんなふうになるのでしょうか? 実部の式は、x^2-y^2ですよね。 導関数 関数 y=x^2-6xについて、次の問に答えよ。 問1 導関数を求めよ。 問2 関数 y=x^2-6xのグラフの上のx=2に対応する点の接線の傾きを求めよ。 問3 問2の接線の方程式を求めよ。 私の回答 y’(x)=nx(nー1)を使って 問1 2x-1 問2 3 問3 5 これであってますか? 問3は微分係数の定義か導関数の定義を使うのでしょうか? 教えてください。 よろしくお願いします。 複素関数の証明問題です f(z)がzの解析関数(正則関数)であるとき (∂^2/∂x^2 + ∂^2/∂y^2)|f(z)|^2 = 4|f'(z)|^2 を証明する問題なのですが f(z)=u(x,y)+iv(x,y)とおいて、左辺を計算すると、 (∂^2/∂x^2 + ∂^2/∂y^2)(u^2+2uvi-v^2) =(∂/∂x)(∂u^2/∂x)+(∂/∂x)(∂2uvi/∂x)-(∂/∂x)(∂v^2/∂x) +(∂/∂y)(∂u^2/∂y)+(∂/∂y)(∂2uvi/∂y)-(∂/∂y)(∂v^2/∂y) =(∂/∂x)(2u(∂u/∂x))+(∂/∂x)(2vi(∂u/∂x))-(∂/∂x)(2v(∂v/∂x)) +(∂/∂y)(2u(∂u/∂y))+(∂/∂y)(2vi(∂u/∂y))-(∂/∂y)(2v(∂v/∂y)) コーシー・リーマンの関係式を用いて、 =2(∂u/∂x)(∂v/∂y)+2i(∂v/∂x)(∂v/∂y)+2(∂v/∂x)(∂u/∂y) -2(∂u/∂y)(∂v/∂x)-2i(∂v/∂y)(∂v/∂x)-2(∂v/∂y)(∂u/∂x) =0 となりました。 最後のところで 2(∂u/∂x)(∂v/∂y)+2i(∂v/∂x)(∂v/∂y)-2(∂v/∂x)(∂u/∂y) -2(∂u/∂y)(∂v/∂x)-2i(∂v/∂y)(∂v/∂x)+2(∂v/∂y)(∂u/∂x) となれば 4{(∂u/∂x)(∂v/∂y)-(∂v/∂x)(∂u/∂y)} =4{(∂u/∂x)^2+(∂v/∂x)^2} =4|f'(z)|^2 となり、証明できるのですが、途中どこが間違っているかが分かりません 長文となりましたが、分かる方よろしくお願いします。 正則関数において,各値が一定の曲線群が直交することの証明 z=re^(iθ)の正則関数をw(z)=u(r,θ)+iv(r,θ)とする. このとき,uv平面上の曲線群 C_1:r=(一定),C_2:θ=(一定) は交点wで互いに直交することを示せ. ただし,交点でw'(z)≠0すなわちwは臨界点ではないものとする. この問題の前の問題として z=x+iy,w(z)=u(x,y)+iv(x,y),C_1:u=(一定),C_2:v=(一定),交点z と設定した問題があったのですが, コーシーリーマンの条件を用いて 法線方向のベクトルの内積が0となることを示して解きました. 極座標になったとたんにわからなくなってしまいました. よろしくお願いします. 複素関数論の問題です。 f(x)=2+logz,w=f(z)とする。 また,D={z∈C; |z-(1/2)| < (1/2)} とする。 (1) f(1+i)をw平面上に図示せよ。 (2) z平面上の半直線(0,∞)とDの境界∂Dのw=f(z)による像の交点および交角を求めよ。 (3) Dのw=f(z)による像の概略図を描け。 とう問題です。 よろしくお願いします。 複素関数論の問題です。 複素関数論の問題です。 u(x,y) = (e^-x)sin(y) 調和関数(ラプラス方程式の解)であることを示し、その共役調和関数v(x,y)を求めよ 私はこの証明は触れたことがありません。 ご回答お願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 自然科学 理科(小学校・中学校)化学物理学科学生物学地学天文学・宇宙科学環境学・生態学その他(自然科学) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
回答ありがとうございます。 解き方を理解できました