3次方程式 完全立方式
a,b,c,dを実数として、ax^3+bx^2+cx+d=0 (a≠0)・・・・(1)を、(xの整式)^3=定数に変形する解説でわからなくなったので質問します。
(1)の両辺を0で割って、
x^3+(b/a)x^2+(c/a)x+(d/a)=0・・・・(2)を、xの整式は2次以上だとその3乗は6次以上 だから、xの整式は1次より、A,Bを実数として、(Ax+B)^3=定数・・・・(3)のかたちにするとき、
x^3+(b/a)x^2+(c/a)x+(d/a)-(Ax+B)^3=定数の条件で疑問が浮かびました。なぜ二つのxの3乗を含む式の差が定数となるか、明確な理由がわからないのです。
自分は(3)より(Ax+B)^3-定数=0、(2)と右辺が等しいので
x^3+(b/a)x^2+(c/a)x+(d/a)=(Ax+B)^3-定数、
x^3+(b/a)x^2+(c/a)x+(d/a)-(Ax+B)^3=-定数。 より差が定数で、(1)を(Ax+B)^3=定数に変形するできるかと思いました。でもこれでは最初に予想した定数と符号が逆になってしまうので、理由に自信がありません。
インターネットで調べて、解説したページ https://suu3galois.hatenablog.com/entry/2020/08/17/123844 を読んだのですがよくわかりませんでした。
どなたか、x^3+(b/a)x^2+(c/a)x+(d/a)-(Ax+B)^3=定数ならば、(1)を(Ax+B)^3=定数に変形できる理由を教えてください。
二つのxの3乗を含む式の差が定数となる条件は係数を比較し、xを含む項を消すというもので、結局は(1)を(Ax+B)^3=定数にすることはできないと書いてありました。