- ベストアンサー
数III 極限の質問
正三角形ABCの内接円O1の半径をRとする。 辺AB、ACと円01(オー1)に接する円をO2とし、辺AB、ACと円O2に接する円をO3とする。 このように次々に小さくなる円を作るとき、全ての円の面積の和を求めよ。 全体的な方針はわかるのですが、O2の半径の求め方で詰まってしまいます。 半径の求め方を含め誰かお教え願えないでしょうか? よろしくお願いします。
- みんなの回答 (2)
- 専門家の回答
正三角形ABCの内接円O1の半径をRとする。 辺AB、ACと円01(オー1)に接する円をO2とし、辺AB、ACと円O2に接する円をO3とする。 このように次々に小さくなる円を作るとき、全ての円の面積の和を求めよ。 全体的な方針はわかるのですが、O2の半径の求め方で詰まってしまいます。 半径の求め方を含め誰かお教え願えないでしょうか? よろしくお願いします。