ベストアンサー 定積分の問題で出来ないのがあるので教えてください。 2012/07/28 18:14 図の定積分を求めてください。(途中式もお願いします。) ちなみに答えは、 t<1のとき-t^2/2+t 1≦tのときt^2/2-t+1 です。 画像を拡大する みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー info22_ ベストアンサー率67% (2650/3922) 2012/07/28 20:23 回答No.2 積分範囲はx=0~tなので t<1のときは ∫[0,t] |x-1|dx=∫[0,t] (1-x)dx=[x-x^2/2](x=t)=-((t^2)/2) +t t≧1のときは ∫[0,t] |x-1|dx=∫[0,1] (1-x)dx+∫[1,t] (x-1)dx =[x-x^2/2](x=1)+[x^2/2 -x](x=t)-[x^2/2 -x](x=1) =(1/2)+((t^2)/2) -t +(1/2) =((t^2)/2) -t+1 となります。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (1) 151A48 ベストアンサー率48% (144/295) 2012/07/28 19:34 回答No.1 | x-1|=-x+1 (x<1) x-1 (x>=1) なので, t<1のとき 0からtまで-x+1を積分 t>=1のとき0から1まで-x+1を積分,さらに1からtまでx-1を積分して加えます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 積分の問題 積分の問題 a×e^(-at)をtをt1~t2の間で積分すると答えはどうなりますか? 積分の問題です 途中で間違えていたため訂正しました; 積分の計算の質問です。 (1)∫(-π/2~π/2)(tanx)^2dx これは広義積分を0までと0からに分けて定義して、 その後(tanx)^2の不定積分を求めるためにt=tanxとおいて計算すると tanx-xが求まり、それを広義積分に当てはめると lim(ε→0)(-π/2+ε+1/tanx)+lim(η→0)(-π/2+η+1/tanx) となったんですが、これは答えが正の無限大となると考えればよいのでしょうか? (2)∫(0→π)(1/1+2cosx)dx これはxが2π/3のとき分母が0になってしまうので、そこを境に広義積分を定義して 次にt=tanx/2とおいて1/1+2coxの不定積分を求めると 1/3*log|(√3+tanx/2)/(√3-tanx/2)|が求まり、 それを広義積分に当てはめるとx=πのところで値がlog|∞/∞| のようになってしまうように思うんですが、 これは途中で間違っているのでしょうか?それとも何か考え方が違うのでしょうか? (3)∫(0~π/2)(π/2-x)tanxdx これは解き方の方針が思いつきません。 どれか1つでもいいので、 回答いただけるとうれしいです>< 積分の証明問題 Lim(x→0) 1/x ∮ (x~2x) sin(1/t) dt =0 を示せ。 という問題が分かりません。1/t=rで置き換えて途中まで計算してみたのですが、cos(r)/rの積分が出てきて止まってしまいました。積分の式が分かりにくいと思ったので、同じ式を書いて画像添付しました。 証明が分かる方、教えてくださると助かります。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 積分について 積分について ∫0⇢∞ e^-((a+jω)t)dtを積分したいのですが、 u=-((a+jω)t)を置換積分として行ってもうまくいきません。 dt/du=-1/a-1/jωとなるため、 (-1/a-1/jω)e^-((a+jω)t)となります。 答えは1/(a+jω)となります。 途中式をお願いいたします。 積分の計算 次の計算式が解けないです。 ∫(9x+4)^2 √{(9x+4)^2-36}dx ((9x+4)^2-36までルートの中です。) 9x+4をtとおいてt^2√(t^2-36) として計算すればいいのかなと 思ったのですが、答えが5択でどれも 1/72[(9x+4){2(9x+4)^2 -36}] √{(9x+4)^2-36}-1296ln|(9x+4)+√{9x+4(^2)-36}| といった解答なのでとき方が正しくないのかなと思ってしまいました。 この積分の途中式と答えを教えていただけますか? また、lim x→0+ (e^x + 9x)^(4/x) をL'hopital's Ruleを使って解いたんですが、答えがe+9になりました。自信がないので、途中式と答えを教えてくださるとうれしいです。 よろしくお願いします。 定積分の問題です。 写真の☆印の問題です。 (3)は部分積分で式を立てたのですが、答えと自分の答えが合いません。どこで間違っているか知りたいので、式を教えてください。 本当の答え ㏒2-1/2 (5)はx=2tanθと置いたのですが、↑と同じく答えが合いません。 よろしくお願いします。 定積分の問題です。 定積分の問題です。 ∫ e^2t^2 sint dt という式なんですが、 部分積分を使おうとしてもうまく計算できません。 分かる方お願いします。 積分 多変数関数の積分法の問題です。1.(1)の途中式と答えをよろしくお願いします。 部分積分なのですが・・・・・ テスト勉強をしていて、 4t^3×e^t^2の積分の答えがどうしてもあいません。 途中の変換をどなたかおしえてもらえないでしょうか? だいぶ書くのがめんどくさいと思いますがすいませんm(_ _)m 4×(tの3乗)×〔eの(tの2乗)乗〕のtで積分です。すいません。 畳み込み積分 次の式 [ { A・exp(-αt)・sin(ωt) +B・exp(-αt)・cos(ωt) }・δ(t) ] * E(t) を計算すると答えはB・E(t)となるようなのですが、その途中経過がよく分かりません。ただし、*は畳み込み積分を表し、δ(t)はデルタ関数、A、B、α、ωは定数です。 誰か教えてください。お願いします。 不定積分 次の不定積分を求めよ。で答えを見てもなぜ、こうなるのか全く分からないのでできれば途中式もお願いします!! 定積分∫√(1+x)dx 積分区間[0,1] 定積分∫√(1+x)dx 積分区間[0,1] を表す式は次のうちどれか? (添付図) (1)この問題の答えは4番になるらしいのですが、どうやって考えるのでしょうか? (2)この問題意外にも、このような問題を解く方法を教えていただけると助かります。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 積分 積分 インテグラル(上に4、下に0)|x-1|dx の値を出す途中式がわかりません。 5という答えなんですが、誰か 教えていただければ本当に助かります。 お願いします。 積分の問題です。先ほども質問させてもらいましたが、 積分の問題です。先ほども質問させてもらいましたが、 自分なりに解いた答えと、皆さんの答えが違っていました。 どこが違うのか、考え方が違うのか教えてください。 ※パソコンでの書き方が慣れていないため、かっこの付け方や 途中式で見ずらいものがあると思います。お許しください。 次の定積分を求めよ。 (1)∫(0~π/2)sin^2xcos^3xdx =∫(0~π/2)sin^2(1-sin^2)cosxdx =∫(0~π/2)(sin^2-sin^4)cosxdx =∫(0~π/2)sin^2(cosx)-sin^4(cosx)dx =[(1/3)sin^3x-(1/5)sin^5x](0~π/2) =(1/3-1/5)-0 =2/15 (2)∫(0~1)xtan^-1xdx t=tan^-1xとおくとx:0→1のときt:0→π/4 x=tant dx=1/(cos^2t)dt ∫(0~1)xtan^-1xdx =∫(0~π/4)tant/cos^2tdt =∫(0~π/4)(sint/cost)(1/cos^2t)dt =∫(0~π/4)sint/cos^3tdt =∫(0~π/4)(cos^-3t)(sint)dt =[(1/2)cos^-2(t)](0~π/4) =(1/2)(1/(1/√2)^2)-(1/2)(1/(1^2) =1-(1/2)=1/2 と解きました。長くなりましたが、よろしくお願いします。 広義積分の問題です。 ∫ [-1→1] (1/(e^x-e^-x)) dxを積分するとx=0で定義されないので、2つに分けて、 ∫ [-1→0] と∫ [0→1] に分けて極限を用いて積分します。e^x=yとおくと 1/2[log(y-1)/(y+1)]をe^-1→e^tまで定積分してlim[t→-0]とするのと、 1/2[log(y-1)/(y+1)]をe^sからeまで積分してlim[s→+0]とするのの和になると思います。 1/2lim[t→-0][log(y-1)/(y+1)][e^t→e^-1] +lim[s→+0][log(y-1)/(y+1)][e→e^s] (記号の書き方がよくわからないのでこんな式にしてみました) (絶対値記号がうっとうしいので()記号にしました) ところが、lim[t→-0]log(e^t-1)は、ー∞で、lim[s→+0][log(e^s-1)もー∞なので、 全体的には、符号的が、-∞ー(-∞)になるとおもいます。これは、積分不能ということでしょうか。答えには、発散と書いてありますが、∞ー∞は発散するのでしょうか。 よろしくお願いします。 定積分の問題です。 定積分∫(0→-2)X^2/(1+X^3)^2 dx の解き方がわかりません。 途中式もなく申し訳ないです。 解き方が全くわからないので、わかる方ヒントでもいいので よろしくお願いします!! 絶対値つきの定積分の問題 ∫|sin x|dx 範囲は[-π,π] =2∫|sin x|dx 範囲は[0,π] ←範囲が[-π,π]で、|sin x|は偶関数なので。 =2∫(sin x)dx + 2∫(sin x)dx 範囲は[0,?]と[?,π] =... 範囲が分かりません。 絶対値がある場合の積分の計算は、場合分けをすると思うのですが その場合分けの考え方が分かりません。 答えは「4」と分かっているんですが、途中式がないため答えまでたどり着きません。 「場合分けの考え方」と「途中式」の説明をお願いします。 積分の問題 積分でわからない問題があります. (1)∫1/(a-sin x)dx (a>1) (2)∫[0,1](arcsin x)/√(1-x) dx (1)はsinx=tなどと置換してみましたが,複雑な式が出てくるばかりで解答の糸口が見えませんでした. (2)は部分積分によって出てきた項(1/{(1-x)√(1+x)})が積分できません.また,積分後もどのように解いていけばよいのかが不明です. アドバイスをお願いします. 積分方法 積分の解き方が解らなくなってしまったので、援助お願いしますm(_ _)m 積分の問題で「x/(x^2+1)」を説いてたのですが、教科書などではいきなり答えに飛んで途中式が解りません。 途中式は後で他の問題でも応用できるように細かく書いていただけると助かります。 問題 「∫x/(x^2+1)dx」 途中式 ∫x/(x^2+1)dx =∫1/(x^2+1)dx*∫xdx? =log(x^2+1)*1/2(x^2)? 答えは「1/2(log(x^2+1))」だそうです。 よろしくお願い強います。 シュレディンガー表示を積分してハイゼンベルグ表示を得る シュレディンガー表示を積分してハイゼンベルグ表示を得る 下記(1)式を積分して(2)式が得られるというのですが、 導出方法がわかりません。 どう積分すればいいのかわからなかったので、 微分方程式を解いてみると、(3)式を得ました。 (3)式にt_0を代入したのが(4)式です。 (4)式に何らかの条件を課せば(2)式が得られると思うのですが、 どういう条件が課せるのかわかりません。 教科書にはt_0について何も書かれていませんが、たぶん初期時刻のことだと思います。 ちなみこれは、量子力学におけるシュレディンガー表示からハイゼンベルグ表示を 得るための途中式です。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など