締切済み 重積分の範囲が違ってました、、 2012/03/21 02:53 球x^2+y^2+z^2<12 と√(3)z>√(x^2+y^2) の共通部分vの体積|v| でした。 もう一度、よろしくお願いします。 みんなの回答 (2) 専門家の回答 みんなの回答 info22_ ベストアンサー率67% (2650/3922) 2012/03/21 20:21 回答No.2 #1です。 共通部分の立体の形状の図です。 A#2の簡単な補足説明です。 立体はz軸の対して回転対称であるのでA#1に書いたように 0≦z≦√3の範囲の円錐部分V1 と √3≦z≦2√3の範囲の球の一部V2 の体積を加えたものが全体の体積Vになります。 V=V1+V2 このV1は積分を使わなくても円錐の体積公式 V1=hπ(r^2)/3=√3*(3^2)/3=3√3π で計算できます。 V2の方はA#1に書いた回転体の積分公式の計算で簡単に求められます。 V2=5√3π 画像を拡大する 通報する ありがとう 0 広告を見て他の回答を表示する(1) info22_ ベストアンサー率67% (2650/3922) 2012/03/21 09:20 回答No.1 r=√(x^2+y^2)とおくと回転体の体積公式を使って V=π∫[0,√3] r^2dz+π∫[√3,√12] r^2 dz =π∫[0,√3] 2z^2dz+π∫[√3,√12] (12-z^2)dz =π*3√3+π*5√3 =8√3π 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 重積分の体積 重積分の体積の問題で分からないものがあります。 どなたか解説頼みます(__ (1)Z=2-x^2-(y/2)^2とxy平面で囲まれる立体の体積を求めよ。 (2)2曲面Z=x^2+y^2-1とZ=-2x^2-2y^2で囲まれる立体の体積 (3)球x^2+y^2+z^≦a^2と円柱x^2+y^2≦axの共通部分。ただしa>0。 (1)まず与えられた式を立体に図示できないのですが、それぞれどんな形の式になるのでしょうか? (2)図示できなので範囲もわからないです^^; それさえできればあとは積分するだけですよね? (1),(2)の疑問を解説して下さい(__ 重積分の問題です。 重積分の問題です。 よろしくお願いします。 xy平面上の円(x-a)^2+y^2=a^2の周上の各点を通るz軸に平行な直線によって作られる直円柱がある。上半球x^2+y^2+z^2=4a^2,z>=0の内部にあるこの直円柱と、 円錐C:z<=h-(h√(x^2+y^2))/(2a),z>=0 この直円柱と円錐の共通部分の体積 2つの体積まではもとまりましたが、共通部分の体積の求め方が全くわかりません。 直円柱の体積は(8(3π-4)a^3)/9 円錐の体積は(4πa^2h)/3 重積分の問題 (1)∫∫∫_v dxdydz (V={(x,y,z)| x^2/a^2+y^2/b^2+z^2/c^2≦1}) (2)sin(x+y+z)の三重積分で領域Vは、V={(x,y,z)|0≦x,y,z≦π} (3)平面z=0上に面積確定の有開閉領域Dがあり、その面積をSとする。点Q=(a,b,h)(h>0)をとり、PをDの点として動かすとき、線分QP上の点全体の集合を、Dを底面、Qを頂点とする錐体と呼ぶ。この錐体の体積はSh/3であることを示せ。 上の三問なんですが、(1)は、xを固定して、領域Dとして、D={(y、z)|y^2/b^2+z^2/c^2≦1-x^2/a^2}として解こうとするのですがこれからどうすればわかりません。 (2)は答えは8なのですが、自分は-8になります。 (3)はさっぱりわかりません。 どうかよろしくお願いします。 重積分の計算 次の三重積分を計算せよ。 (1)∫V x dxdydz V={(x,y,z)|z^2+y^2+z^2≦1、x^2+y^2≦z^2、z>0} (2)∫V xyzdxdydz/√(a^2x^2+b^2y^2+c^2z^2) V={(x,y,z)|x^2+y^2+z^2≦1、0≦x,y,z} ただしa>b>c>0 両方とも極座標変換を試みたのですが上手くいきませんでした。 どのような変換をすれば累次積分に帰着出来るのでしょうか? ちなみに答えは(1)がπ/8、(2)が(ab+bc+ca)/15(a+b)(b+c)(c+a)でした。 急いでます。.重積分の問題です 急いでます。.重積分の問題です (1) ∫∫√(xy-x^2)dxdy {(x,y)|0<x<y<2x<2} (2) 曲面bz= x^2+y^2(b>0)と円柱面x^2+y^2=ax(a>0)と平面:z=0に囲まれた部分の体積を求めよ (3)曲面:z=x^2+y^2と平面z=xに囲まれた体積を求めよ 重積分について 曲面 Z=x^2+y^2と平面z=2xに囲まれた部分の体積を求めよ。 この問題がわかりません。この問題はグラフがかけないと求められないのでしょうか? 仮にグラフを用いなくても求められる場合その方法を教えていただけると幸いです。 大学で習った、重積分の問題です 重積分の問題で、解けない問題があるんです。 パソコンなので表現が制限されているのですが、できるだけ詳しく解き方の説明をお願いします。 1.球 x^2+y^2+z^2=a^2 (a>0) の内部にある円柱 x^2+y^2≦ax の部分の体積 2.楕円体 (x^2)/(a^2)+(y^2)/(b^2)+(z^2)/(c^2)≦1 (a,b,c>0) の体積 3.円柱面 x^2+y^2=a^2 (a>0) の内部にある円柱面 x^2+z^2=a^2 の表面積 以上3つです。 協力お願いします。 重積分の問題が解けません 次の重積分の問題がどうしても解けません。 次の図形の体積を求めよ x^(2/3)+y^(2/3)+z^(2/3)≦a^(2/3) (a:定数,a > 0) 私は次のようにして解こうとしました。 まず x=u^3,y-v^3,z=w^3,a=b^3 と置きました。 0≦w≦√(b^2-u^2-v^2) ヤコビアンを求め、 dxdydz=27・u^2v^2w^2・dudvdw とし、計算を進め、さらにもう一度変数変換を行いました。 u=rcosθ,v=rsinθ(極座標表示) 同様にヤコビアンを求め計算を進めました。 この方法では正しい解答に行き着きませんでした。 ちなみに答えは(4πa^3)/35となっています。 どなたかご教授ください。 お願い致します。 急いでます。.重積分の問題です (1) ∫∫√(xy-x^2)dxdy {(x,y)|0<x<y<2x<2} (2) 曲面bz= x^2+y^2(b>0)と円柱面x^2+y^2=ax(a>0)と平面:z=0に囲まれた部分の体積を求めよ。 (3)曲面:z=x^2+y^2と平面z=xに囲まれた面積を求めよ。 重積分の変数変換 ∫∫∫(1-x-y-z) dxdydz (0≦x≦y、z≧0、x+y+z≦1) この問題で、直交座標を下のように斜行変換して、 u=x+y+z v=y+z/x+y+z w=z/y+z 以下のように式変換します。 x=u(1-v) y=uv(1-w) z=uvw よりヤコビアンを求めて ∫∫∫(1-u)vu^2 dudvdw このときに、u,v,wの値の範囲は、 0≦u≦1 0≦v≦1 0≦w≦1 でいいのでしょうか? 考え方がよくわかりません・・・。 教えてください。 重積分の問題です。 以下の問題の回答をお願いします。 3次元空間上の領域K={(x, y, z)∈R^3|x^2+y^2=1, x>=0, y>=0, 0<=z<=√2}及び平面L={(x, y, z)∈R^3|x+y-z=0}について考える。ここで、Rは実数全体の集合を表す。 領域Kの中で平面Lとxy平面に挟まれた領域の体積Vを求めよ。 積分範囲がイメージしずらいので、うまく図示する方法などあれば教えて頂きたいです。。。 重積分の問題です (√(x^2+y^2)-2)^2+z^2=1で定義される曲面で、分けられる、有限部分の体積の値を求めよという問題なのですが、さっぱりわからなくて困っています。教えてくださいお願いします。できれば解答例をお願いします。 重積分の問題です 円柱面x^2+y^2=1と平面z=xで囲まれた部分の体積を重積分を使って解くのですが、いくら考えても答えが合いません。解説をお願いしたいです。 ちなみに答えは4/3です 重積分の質問です 重積分に関する質問です。 教科書の章末問題にあった問題なのですが、自分で解いてみても答えが合わず、 解答のところにも答えしか載っていないため困っています・・・。どうかご教授お願いします。 [1]変数変換を用いて、次の重積分を求めよ。 ∬D √(1-x^2-y^2)dxdy , D={(x,y);x^2+y^2≦x} [2]次の体積を求めよ。 (1) x^(2/3)+y^(2/3)+z^(2/3)=a^(2/3)(a>0)で囲まれた部分。 (2) x^2+y^2=4-zとxy平面で囲まれた部分。 答え [1](3π-4)/9 [2](1)4πa^3/35 (2)8π 以上です。よろしくお願い致します。 重積分により体積を求めよ 二平面y+z=3、y-3z=3と曲面x^2+y^2=9で囲まれる立体の体積を求めよ。 という問題なのですが、解き方が分かりません。協力お願い致します。 重積分の間違いの訂正 (1)x^2+y^2+z^2=1、z>0、z=√3/2で囲まれる体積 これを重積分で解くつもりで z=√(1-x^2-y) またx^2+y^2+(0)^2=1 x^2+y^2+(√3/2)^2=1 <=> x^2+y^2=1/4 よってD={1/4<=x^2+y^2<=1} と考えたのですがおそらく積分範囲の考え方が間違ってるのだと思います。 どなたか訂正お願いします。 (2)球面x^2+y^2+z^2=a^2(a>0)のうちでx0<=x<=x0+h(-a<=x0<x0+h<=a)の部分の面積 z=√(a^2=x^2-y^2) D={x0<=x<=x0+h 0<=y<=√(a^2-x^2)} こちらも積分範囲が間違っているのだと思います。どう考えればいいのか教えてください。 重積分 問題 x^2 + y^2 + z^2 = a^2 (a > 0) で囲 まれた, 円柱面 x^2 + y^2 = a*xの内部の体積を求めなさい この問題が解けません. お願いします. 重積分 体積 x^2+y^2≦1 ,-y≦z≦2y であらわす体積を求める問題ですが ∫∫3y dxdy=... なぜ3yを重積分するのですか? ...以降のx=rcosθなどと変数変換して解くのは分かります。 重積分で体積と面積を求める問題です f(x,y)=√(1-x²-y²)とする。 また0<a<1とし、D={(x,y)∈R²|x²+y²≦a²}とおく。 (1)集合K={(x,y,z)∈R³|(x,y)∈D,0≦z≦f(x,y)}の体積Vを求めよ (2)曲面A={(x,y,z)∈R³|(x,y)∈D,z=f(x,y)}の曲面積Sを求めよ という問題が解けずに困っています どなたか解放が分かる方がいましたら教えてほしいです 重積分を用いた、体積の求め方 球面x^2+y^2+z^2=a^2(a>0)と円柱x^2+y^2=axで囲まれた立体の体積を求めよ、という問題があります。 領域D={(x,y)|x^2+y^2≦ax}上で関数z=±√(a^2-x^2-y^2)に関する 2∬D|z|dxdyが求める体積です。極座標に変換すると、θの範囲は-π/2≦θ≦π/2で、rの範囲は0<r≦acosθですね。 求める体積は、2∬D{√(a^2-x^2-y^2)}dxdy=2∫{-π/2→π/2}∫{0→acosθ}√(a^2-r^2)*rdrdθ= -2/3*∫{-π/2→π/2}(a^3*(sinθ)^3-a^3)dθ ここで、θの範囲を0→π/2に変えて、全体を2倍しなければ正しい答えが出ません。((sinθ)^3は奇関数なので、当然異なった値が出る。) なぜ、θの範囲を0→π/2に変えて、全体を2倍する作業をしなければならないのでしょうか? 答えは2a^3*(3π-4)/9となっております。 注目のQ&A 「前置詞」が入った曲といえば? 緊急性のない救急車の利用は罪になるの? 助手席で寝ると怒る運転手 世界がEV車に全部切り替えてしまうなら ハズキルーペのCMって…。 全て黒の5色ペンが、欲しいです 長距離だったりしても 老人ホームが自分の住所になるのか? 彼氏と付き合って2日目で別れを告げられショックです 店長のチクチク言葉の対処法 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど