• ベストアンサー

複素幾何の予備知識

小林昭七氏の複素幾何を読みたいのですが、予備知識はどんなのが必要なんでしょうか。

質問者が選んだベストアンサー

  • ベストアンサー
  • kabaokaba
  • ベストアンサー率51% (724/1416)
回答No.5

なんか・・・コメントで盛り上がってるけどねえ・・・ これ,最低でも大学三年生の数学科の知識が必要な本でしょう. これを読むような人は 自分が予備知識を持ってるか自分で判断できるような人か 四年生のセミナーで読むかという感じの本. 予備知識の有無が自分で判断できないのなら まず間違いなく予備知識がありません. 層とか小平の消滅定理とかチャーン類を扱うのだし 微分幾何の大家の手になる本なんだから。。。 特性類はバンドルか層の接続からの導入なのかな. となると予備知識は ・線型代数 ・微分積分 ・位相空間論 ・位相幾何(ホモロジー・コホモロジーは必須.基本群はたぶん不要だが被覆空間を知ってると多分楽) ・多様体論(実だけでなく複素も触り程度は. de RhamやCechのコホモロジーはたぶん知ってるといい.バンドルの概念は多分必須, というか。。。層はバンドルの一般化ともいえるわけで。。) ・複素関数論(一変数はもちろん多変数もコーシーの定理くらいまでは.留数は必須) ・代数(群・環は必須.体論はたぶん使わない) これくらいはざっと必要になるはず. カテゴリーとかスペクトルシーケンスを知ってると 話がみやすいかもしれない・・・けど,完全系列の計算ができればきっと問題ない. Spivakのdifferential goemetryとか 小平・スペンサーの本,Bott-Tuの微分形式の本 くらいは一緒にあるといいかもしれない. 特性類だったら,Milnorの「特性類」も読むといい. 論文だと「Baum, Bott: Singularities of holomorphic foliations」というのがあって、 チャーン類の定義が簡潔に出てるし,多様体の接層の切断(holomorphic foliation)の 特異点と特性類の絡みがでてる(これ、小平とは別種ではあるけど消滅定理の話につながる) #Bottは「Bottの周期性定理」のBott. 岩波の堀川「複素代数幾何入門」(絶版・・図書室にあるかも)と 結構かぶる部分があるように思えるので この本も眺めるといいかもしれない この堀川本は名著だと思うけど,ちょっと物足りないかも #けどきちんと小平の消滅定理とかを比較的初等的に扱ってるいい本だと思う.

その他の回答 (5)

  • kabaokaba
  • ベストアンサー率51% (724/1416)
回答No.6

No.5で書き忘れた 微分形式と多変数複素関数論が出てくるなら ルベーグ積分も知ってる必要があるかも フビニの定理とか dominated convergence theorem(優級数収束定理っていうんだっけ,日本語で), 微分と積分の交換とか L^pノルムの話. 証明の仕方にもよるけど 小平の消滅定理を示すには 微分形式の積分を使うと思う. ・・・やっぱり三年生くらいの内容じゃないかなあ、 目次から分かる予備知識.

hgam
質問者

補足

ありがとうございます。偏微分方程式は必要ないですか?

  • Ae610
  • ベストアンサー率25% (385/1500)
回答No.4

第三者から批判されるとは思っていなかった・・・! 何を頓珍漢な事を言っているのだろうか? ----質問者がそうしていない、という保証はどこにありますか--- そんな事知る由もない・・! 何だ?保証って・・?? 何故こちら側が保証などする必要があるのか・・・!? 何故確かめる必要があるのだ・・・!? 当方はただの盆暗だが、(それでも!)斯様な質問分からは、何ら自分自身で努力もせずに、単に人任せな何ら考えのある質問とは読み取れない・・・! 当方は上記書籍の事は良く分からぬが、それでも「複素幾何」で検索すれば、書籍紹介情報から得られるキーワードに辿り着く事が出来る。(数分程度で辿り着ける!) 本当に手にとって調べてみたのならば、「予備知識はどんなのが必要なんでしょうか」なんて聞き方にはならないと思う!(出てきたキーワードに対する知識が必要という事になるからである!) 凡そ上のような専門性の高いと思われる書籍に関する質問にしては、一寸お粗末な質問内容であると言わざるを得ない・・・! 「ただ質問してみただけ」・・・と勘ぐりたくなるような文面である! (・・・だから調べられるところは(自分で出来るところまで!)調べてから質問しろ!!)・・・と書いたまでである!

noname#221368
noname#221368
回答No.3

>人に聞く暇があるのならば、「自ら情報収集する努力をしろ」・・・!!  わかっている「人に聞く」のは、ある意味一番効率の良い、情報収集だと思います。 >!?(インターネットででも調べられるだろうに・・!?)  だからインターネットを利用して調べてるんですよ。昔と今では、勉強環境も違うのだと、自分は思っています。インターネットを利用して人に聞くのは、もはや普通の行為という事です。 >読みたい書籍が分かっているのであれば、実際に書店に行くなどして、手に取ってみてみればよいではないか・・  質問者がそうしていない、という保証はどこにありますか?。そこを確かめもしないで、上記の発言は一方的すぎます。質問者は、実際に書店に行き、手にとって読んで(あるいは買って)、その上でこの質問をしているかも知れません。質問態度が怪しいと思うならば、回答者は、質問者の本音を誘導すべきです。  自分はけっこう独学で、数学や物理をやって来ました。だから思います。   ・わかっている「人に聞く」のは、ある意味一番効率の良い、情報収集だ. と。ちなみに自分は爺ではありませんが、けっこういい歳の親父です。

  • Ae610
  • ベストアンサー率25% (385/1500)
回答No.2

読みたい書籍が分かっているのであれば、実際に書店に行くなどして、手に取ってみてみればよいではないか・・!?(インターネットででも調べられるだろうに・・!?) 何故そうしないのか・・!? どこに住んでいるのか知らんが、近隣に書店がないのか・・・!? (書店に行けない理由でもあるのか・・・!?) 人に聞く暇があるのならば、「自ら情報収集する努力をしろ」・・・!! ・・・と言いたい!! (幼稚園児でもあるまいに・・・!!)それすらも出来ないのか・・・???

回答No.1

線形写像と開集合がわかってれば、あとは読んでいろいろ調べるしかないのでは?  

関連するQ&A