ベストアンサー 高校受験の図形の問題です 2012/01/17 15:24 問題1CDの長さを求めよ 答えは6√3だと思います 問題2△ABEと△DCEの面積比を求めよ 答えは2:3だと思います 問題3辺ACの長さを求めよ ここがわかりません。よろしくお願いします。 辺ACとBDの交点がEです 画像を拡大する みんなの回答 (3) 専門家の回答 質問者が選んだベストアンサー ベストアンサー DIooggooID ベストアンサー率27% (1730/6405) 2012/01/17 16:52 回答No.2 A から BD に垂線を下ろし、その延長線と 円が交わる点を G とします。 ( A は 弧BD の中点なので、辺AGは、直径 ) 円の中心点を O とすると、・・・ 三角形OCG は、 2つの辺が半径なので、頂点が30度の二等辺三角形。 (弧BC:弧CD=1:2 なので、∠BOC=60度) G から 辺OC に垂線を下ろし、交わる点を H とします。 三角形OGH は、二つの角度が、30度と60度の直角三角形なので、 辺OH は、3√3 辺HC は、 6-3√3 なので、三角形GHC の 辺CG は、 辺GHの二乗 + 辺HCの二乗 = 6√(2-√3) 最後に、三角形ACGも直角三角形なので、 辺AGの二乗 - 辺CGの二乗 = 6√(2+√3) = 約 11.59 質問者 お礼 2012/01/17 21:51 解りやすい解答ありがとうございました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (2) rnakamra ベストアンサー率59% (761/1282) 2012/01/17 16:53 回答No.3 BE=x とおくと DE=12-x となります。 △ABEの面積と△DCEの面積をxを用いて表してみましょう。 AからBEに下ろした垂線の長さはすぐにわかると思います。 CからDEに下ろした垂線の長さも少し考えればわかります。 それぞれの面積が得られれば問題2で得た面積比を使いxに関する方程式が導けます。 さらに△ABEと△DCEは相似であり、その相似比は問題2の際に得ているはずですので、AE,CEの長さを計算することができます。 問題1,問題2は過程を見ていないので答えだけですがOK。 質問者 お礼 2012/01/17 21:52 解り易い解答ありがとうございました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 chie65536(@chie65535) ベストアンサー率44% (8812/19983) 2012/01/17 16:27 回答No.1 弦の長さの公式 2r・sin(θ/2) rは6、θは90度+60度=150度 答:約11.5911099154688 質問者 お礼 2012/01/17 21:49 すいませんが、公式は学んでいません。答えを参考にさせていただきます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 図形問題 数学で解き方が分からない問題があります。 図のように、AB=6cm、AD=8cmの長方形ABCDがある。対角線BD上にDE=4cmとなるように点Eをとる。2点A、Eを通る直線と辺CDとの交点をFとする。また、辺AB上にAG=5cmとなるような点Gをとり、線分FGと対角線BDとの交点をHとする。 このとき次の問に答えよ。 (問)BH:HDを最も簡単な整数の比で表わせ。 答えは、1:4です。 (問)△EHFの面積を求めよ。 答えは、32/5です。 求め方が分かる方がおられたら教えて欲しいです。 高校1年図形問題 高校1年の数学の問題です。 問題;BC=3,CA=4,cosB=-1/4(マイナス4分の1) である△ABCがある。 (1)sinBの値を求めよ。 (2)辺ABの長さを求めよ。また、△ABCの面積を求めよ。 (3)△ABCの外接円の周上にBと異なる点Dを、BC=CDとなるようにとり、 ACとBDの交点をEとする。このとき、CEの長さを求めよ。また、 △CDEの面積を求めよ。 …です。 全く解らないので、教えてください!! (もしよければ図を付けて下さい) 図形の問題 AB=2、BC=√6、CA=3の三角形と円Oがある。 円Oは点Aを通り点Bで直線BCに接している。また、円Oは辺ACに対してA以外の交点Dを持つ さらに、∠Aの二等分線と辺BCの交点をEとする。 (1)三角形ABC∽三角形BDCを証明せよ (2)線分CDの長さを求めよ。またBE:ECを最も簡単な整数比で求めよ (3)線分AE,BDの交点をFとするとき、AF/FEを求めよ。また、三角形ABF、四角形CDFEの面積をそれぞれS,TとするときT/Sを求めよ さっぱりわかりません。どなたか回答よろしくお願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 高校入試・平面図形の問題【2】 次の問題が分かりません。分かりやすく教えてください。 /////////////////////////////////////////////////////// 【1】下の図で、3点A、B、Cは円Oの周上にあり、△ABCはAB=ACの二等辺三角形である。弧AC上に点Dをとり、線分BD上に、BE=CDとなるように点Eをとる。このとき次の問いに答えなさい。 [問1] AB=5cm, AE=BC=4cmのとき EDの長さを求めよ。 [問2] 2つの線分AC、BDの交点をFとする。[問1]のとき、△BCFと△DCFの面積の比を求めよ。 /////////////////////////////////////////////////////// よろしくお願いします。 相似な図形の面積比 1辺の長さが1の正五角形ABCDEにおいて、ACとBEの交点をFとするとき、次のものを求めよ。 (1) ∠BFCの大きさ (2) 対角線ACの長さ (3) 正五角形ABCDEの5本の対角線が内部に作る正五角形と、もとの正五角形との面積比 (1)△ABCにおいて ∠ABC=108゜ BA=BCから ∠BAC=36゜ 同様に、△ABEにおいて ∠ABE=36゜ ゆえに ∠BFC=72゜ (2) AC=xとする。 △ABF∽△ACBであるから AB:AC=AF:AB すなわち 1:x=(x-1):1 よって x^2-x-1=0 これを解いて x=(1±√5)/2 x>0であるから x=AC=(1+√5)/2 (3) ACとBDの交点をGとすると、【AF=CG】で、CF=1であるから FG=AC-2AF=AC-2(AC-CF)=(3-√5)/2 よって、内部の五角形と、もとの五角形の相似比は、 (3-√5):2となるから、求める面積比は (7-3√5):2 (1)、(2)は理解できたのですが、(3)の【 】のところのAF=CGが成り立つ理由が理解することができなかったので、質問しました。 よろしくお願いします。 高校入試の図形の問題です http://www.fukuchan.ac/gazou-bbs/img/1162.jpg 四角形ABCDが円Oに内接している。対角線ACとBDの交点をEとし、BC=BFとなる点FをBD上にとる。 AB=3、BC=1、CD=3、DA=4とするとき、次の各問いに答えなさい。 (1)∠BADの大きさを求めなさい。 (2)BDの長さを求めなさい。 (3)円Oの半径を求めなさい。 (4)EFの長さを求めなさい。 という問題なんですが、中学校までの知識を使って解くことは出来ますか? ちなみに答えは (1)60° (2)√13 (3)√39/3 (4)1-√13/5 です。 ベクトルの問題2 三角形ABCにおいて、AB:AC=5:2とする。 辺ABを2:3に内分する点をDとし、∠BACの二等分線と辺との交点をEとする。 また、線分CDと線分AEとの交点をFとする。 (1)AEベクトルおよびAFベクトルをそれぞれABベクトルとACベクトルを用いて表せ。また、AFベクトルはAEベクトルの何倍と表されるか。 (2)AB=10、AC=4、∠BAC=Π/3であるとき、三角形ABCと三角形ABEおよび四角形BEFDの面積について △ABC=○ △ABE=○ (四角形BEFDの面積)=○ である。 (2)は○を求める問題です。 (1)のAEベクトルは∠BACの二等分線と辺BCの交点がEなので(ABベクトル+ACベクトル)/2だとわかったのですが、AFが出せません。 ベクトルの基本的な問題なのですが、解き方を忘れてしまい、ノートや教科書の類題を見ても完璧に理解することができずに困っています(--;) 解説よろしくお願いいたします。 正四面体の問題 問題集で、下の問題の答えは1:6となっていました。私は1:12ではないのかなと思うのですが、解説がないので納得できません。 この問題について解説いただけると助かります。 [問題] 正四面体ABCDがある。辺ABを1:2に内分した点をEとし、点Eから辺ACを横切って最も短くなるように点Dまで結んだ線分と辺ACとの交点をFとする。このとき、△AEFと△AFDとの面積の和と正四面体ABCDの表面積の比はいくらか。 中3 図形 AB=ACの二等辺三角形ABCとその3つの頂点を通るOがある。点Cを通り、ABに平行な直線と円Oとの交点をD,ACとBDの交点をE,∠CAD=45°とする。∠CBE=45°、∠ACB=75、AB=2√3cm、AE=2cmのとき、□ABCDの面積は何cm2? よろしくお願いします。 △ABEの面積が2√3×1×1/2=√3cm2だとは分かったのですが、続きがわかりません。 図形の問題 三角形ABCがある。辺AB、ACの中点をそれぞれD、Eとし、辺BCを1:2に分ける点をFとする。また、線分CDと線分EFとの交点をGとする。CG=6のとき、線分GDの長さを求めよ。 と言う問題です。 線分BCの比の合計が3なので、DEの比が3/2として、 2:3/2=6:DGとなり DG=9/2 となりました。 このような考えでよろしいのですか? 比でも足して、中点連結定理がなりたつのですか? また、私が考えた解答で間違いがありましたら教えてください。 図形の問題です。 友人から出された問題で、中学の数学でできるというのですが、いろいろ補助線を引いてみてもさっぱり糸口が見えてきません。教えてください。 △ABCの辺BC上にBD=3となる点Dをとると、AD=5となった。 また、辺BC上に各BAE=45°となる点Eをとると、DE:EC=1:6 , AB:BE=7:5となった。 このとき△ABEは鋭角三角形である。△ABCの面積を求めよ。 相似を使った平行四辺形の面積 相似を使った平行四辺形の面積についての質問です。 「平行四辺形ABCDの辺AD上に三等分点E、Fをとり、BとEを結ぶ。対角線ACと線分BEとの交点をP、対角線ACと対角線BDとの交点をOとする。平行四辺形ABCDの面積が48のとき、三角形BOPの面積はいくらか。」 △ABD:△ABE=3:1、△APE:△PBC=1:3までは、相似比で求められたのですが そこから先がよくわからなくなってしまいました。 よろしくお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 平面図形の問題です。教えて下さい。 平行四辺形ABCDにおいて、2辺CD、ADの中点をそれぞれE、Fとし、線分AEと線分BFの交点をGとする。このとき、三角形EFGと三角形BCEの面積の比を、最も簡単な整数の比であわしなさい。 図形の問題がわかりません。 閲覧ありがとうございます。 図形の問題がわかりません。教えてください。 問題を書きます。 図のように 円Oに内接する四角形 ABCDがあります。2辺 AD, BE を延長し その交点を Cとし、∠ABE =90゜, 2AB =BC, AB =1, EはBCの中点とします。このとき、 ∠ADEの大きさ と,円Oの直径と, DEの長さを求めよ。 また、△ABCの面積は△CDEの面積の何倍か。 というのが問題です。 詳しく教えて戴ければ嬉しいです。 よろしくお願い致します 平面図形 問題:△ABCの3辺AB,BC,CAの中点をそれぞれD,E,Fとする.中線AE,BF,CDと等しい長さの線分を3辺とする三角形をPQRとするとき,△ABCと△PQRの面積比を求めよ. (答)・・・4:3 なんですが、解き方が全く思いつきません。自分としては、中点だから中線AE,BF,CDの交点が重心になるのでそれも何か関係するのかと思うんですが。後もしかしたら2つの三角形は相似で2乗して面積比を求めるのかとも思います。簡単な問題かもしれませんが解けないと気になってしまうのでぜひなぜそうなるのか教えて下さい。 一応言っときますが今は高校1年生です。 三角比の応用問題が・・・ 1辺の長さが1の正五角形ABCDEにおいて、対角線AC,BEの交点をFとし、∠ABE=θとおく。(△ABE∽△FABは使ってもよい) (1)線分BFと線分BEの長さを求めよ (2)cosθの値を求めよ (3)△ABFと△ACDの面積比を求めよ という問題なんですが、さっぱりです。式が分かると後は自分で考えたいので、計算式だけでいいので教えてください。 高校受験・平面図形の問題 この問題はどうすれば解けるのでしょうか? この問題の図形が全然想像できません。 わかりやすい説明、お願いします。 ///////////////////////////////////////////////////////// ■4 下の図において、四角形ABCDは平行四辺形で、点E、点Fはそれぞれ辺BC、辺CD上の点である。∠EFC=∠DBCのとき、次の各問に答えよ。 【問2】点Eが辺BCの中点のとき、次の(2)に答えよ (2) EF//BDのとき、頂点Aと点E、頂点Aと点Fをそれぞれ結ぶ。BD=20cm、∠EAF=90°のとき、△AEFの面積を求めよ。 ////////////////////////////////////////////////////////// どなたかご教授願います。 平面図形の問題 図のような△ABCがある。辺BC上に点Dを、辺CA上に点Eを、辺AB上に点Fを、BD/DC=CE/EA=AF/FB=1/2となるようにとる。さらに、線分ADと線分CFとの交点をP、線分ADと線分BEとの交点をQ、線分CFと線分BEとの交点をRとする。 △PQRと△ABCの面積比△PQR/△ABCの値を求めよ。 という問題の解き方を教えてもらえないでしょうか? 回答よろしくお願いします。 数学の問題を教えてください! 私は中3の受験生です。 数学の入試の過去問題を解いているのですが、わからない問題があって困っています。 わかりやすく解説していただけるととってもありがたいです。 よろしくお願いします。 問題 図のように、AD=3cm、BC=2√2cm、CD=√2cm、角BCD=90°の四角形ABCDがあり、角BAC=角BDCである。 線分ACと線分BDの交点をEとする。 このとき、次の問いに答えよ。 1.線分BDの長さを求めよ 2.三角形EABと三角形EDCの面積の比を最も簡単な整数の比で表せ。 また、三角形EBCと三角形EADの面積の比を最も簡単な整数の比で表せ。 3.三角形EABの面積を求めよ 数学の図形の問題です。 数学の図形の問題です。 △ABCで3辺BC、CA、AB上にそれぞれ点D、E、Fをとり、線分ADとEFの交点をGとする。 FE∥BC、BD:DC=CE:EA=1:2のとき、四角形BDGFの面積は△AGEの面積の何倍か求めよ。 解答を見たのですがよく分かりませんでした。 △ADCの面積をSとすると (1)BD:DC=1:2より △ABDの面積は (1/2)S (2)FE∥BCでAE:EC=2:1だから △AGEと四角形DCEGの面積比は4:5 △AFGと四角形BDGFの面積比は4:5 より△AGEの面積は(4/9)S 四角形BDGFの面積は(5/9)×(1/2)S =(5/18)S (5/18)S÷(4/9)S=5/8 倍 解答はこのように書いてありました。 (1)は分かったのですが(2)の面積比が4:5になる理由がよく分かりません。解説を お願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
解りやすい解答ありがとうございました。