- 締切済み
数IIIの問題
関数f(x),g(x)をそれぞれ f(x)=sinx, g(x)={1-│x│(│x│≦1のとき) 0(│x│>1のとき)} とする。また,bを0<b<πとなる定数とし,正の実数aに対して I(a)=∫(-2a+b→2a+b) f(x)g(x-b/a)dxを考える。 (1)I(a)を求めよ。 (2)h(x)=xsinx+cosx-1とする。方程式h(x)=0はπ/2<x<πにおいてただ1つの実数解をもつことを示せ。また,この解をx=cとするとき,a>0におけるI(a)の最大値は2(sinb)(sinc)であることを示せ。 が答えをみてもよく分かりません。 (1)で │x-b/a│≦1すなわちb-a≦x≦b+aだから, とあるのですが、なぜ│x-b/a│≦1なのですか? (3)の後半も教えてください。
- みんなの回答 (2)
- 専門家の回答
みんなの回答
- info22_
- ベストアンサー率67% (2650/3922)
回答No.2
- naniwacchi
- ベストアンサー率47% (942/1970)
回答No.1